The association of the population recruitment of gulf menhaden, Brevoortia patronus, with Mississippi River discharge
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963; e-ISSN 1879-1573, more
Also appears in:Ruddick, K. (1997). Processes in regions of freshwater influence (PROFILE): selected papers from the 27th International Liège Colloquium on Ocean Hydrodynamics, held in Liège, Belgium, on May 8-12, 1995. Journal of Marine Systems, 12(1-4). Elsevier: The Netherlands. 1-326 pp., more
| |
Keywords |
Inflow > River discharge Population functions > Recruitment Marine/Coastal; Fresh water |
Author keywords |
Cross transport; Dwarstransport |
Abstract |
Gulf menhaden, Brevoortia patronus, which constitutes a major industrial reduction fishery in the USA, spawn across the northern Gulf of Mexico with a focus of spawning about the Mississippi Delta. This species is estuarine dependent; adults spawn over the continental shelf and their larvae are transported, by mechanisms that are presently not well understood, to estuarine nursery areas. Larval gulf menhaden, along with some other surface oriented larval fishes, appear to aggregate along the Mississippi River plume front, while evidence of the ecological consequences of this aggregation in terms of the feeding, growth, and survival of larvae is ambiguous. On an annual scale, Mississippi River discharge is negatively associated with numbers of half year old recruits. Discharge of the Mississippi River and the population recruitment of gulf menhaden may be plausibly linked through the action of the river's plume and its front on the shoreward transport of larvae. Greater river discharge results in an expansive plume that might project larvae farther offshore and prolong the shoreward transport of larvae. An indirect, decadal scale, positive response of recruitment and river discharge is possible, but not certain. Recruitment became elevated after 1975 when river discharge increased and became highly variable. This response might owe to enhanced primary and secondary production driven by nutrient influx from the Mississippi River. |
|