Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Drifting dynamics of the bluebottle (Physalia physalis)
Lee, D.; Schaeffer, A.; Groeskamp, S. (2021). Drifting dynamics of the bluebottle (Physalia physalis). Ocean Sci. 17(5): 1341-1351. https://dx.doi.org/10.5194/os-17-1341-2021
In: Ocean Science. Copernicus: Göttingen. ISSN 1812-0784; e-ISSN 1812-0792, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Lee, D.
  • Schaeffer, A.
  • Groeskamp, S., more

Abstract

    Physalia physalis , also called the bluebottle in Australia, is a colonial animal resembling a jellyfish that is well known to beachgoers for the painful stings delivered by its tentacles. Despite being a common occurrence, the origin of the bluebottle before reaching the coastline is not well understood, and neither is the way it drifts at the surface of the ocean. Previous studies used numerical models in combination with simple assumptions to calculate the drift of this species, excluding complex drifting dynamics. In this study, we provide a new parameterization for Lagrangian modelling of the bluebottle by considering the similarities between the bluebottle and a sailboat. This allows us to compute the hydrodynamic and aerodynamic forces acting on the bluebottle and use an equilibrium condition to create a generalized model for calculating the drifting speed and course of the bluebottle under any wind and ocean current conditions. The generalized model shows that the velocity of the bluebottle is a linear combination of the ocean current velocity and the wind velocity scaled by a coefficient (“shape parameter”) and multiplied by a rotation matrix. Adding assumptions to this generalized model allows us to retrieve models used in previous literature. We discuss the sensitivity of the model to different parameters (shape, angle of attack and sail camber) and explore different cases of wind and current conditions to provide new insights into the drifting dynamics of the bluebottle.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors