Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
one publication added to basket [122843] |
A Bayesian Compositional Estimator for microbial taxonomy based on biomarkers
Van den Meersche, K.; Soetaert, K.; Middelburg, J.J. (2008). A Bayesian Compositional Estimator for microbial taxonomy based on biomarkers. Limnol. Oceanogr., Methods 6(5): 190-199. https://dx.doi.org/10.4319/lom.2008.6.190
In: Limnology and Oceanography: Methods. American Society of Limnology and Oceanography: Waco, Tex.. ISSN 1541-5856; e-ISSN 1541-5856
Is gerelateerd aan:Van den Meersche, K.; Soetaert, K.; Middelburg, J.J. (2009). A Bayesian Compositional Estimator for microbial taxonomy based on biomarkers, in: Van den Meersche, K. Carbon flows in the planktonic food web of temperate estuaries: a combined approach using stable isotopes, biomarkers and modeling. pp. 51-66, meer
| |
Auteurs | | Top |
- Van den Meersche, K.
- Soetaert, K.
- Middelburg, J.J.
|
|
|
Abstract |
Determination of microbial taxonomy based on lipid or pigment spectra requires use of a compositional estimator. We present a new approach based on Bayesian inference and an implementation in the open software platform R. The Bayesian Compositional Estimator (BCE) aims not only to obtain a maximum likelihood solution, but also to provide a complete estimate of the taxonomic composition, including probability distributions and dependencies between estimated values. BCE results are compared with those obtained with CHEMTAX. The BCE has not only a similar accuracy, but also extracts more information from the data, the most obvious being standard deviation and covariance estimates. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.