Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
[ meld een fout in dit record ] | mandje (1): toevoegen | toon |
one publication added to basket [199507] | |
Sand dynamics in coastal dune landscapes constrain diversity and life-history characteristics of spiders Bonte, D.; Lens, L.; Maelfait, J.-P. (2006). Sand dynamics in coastal dune landscapes constrain diversity and life-history characteristics of spiders. J. Appl. Ecol. 2006(43): 735-747. dx.doi.org/10.1111/j.1365-2664.2006.01175.x
In: Journal of Applied Ecology. British Ecological Society: Oxford. ISSN 0021-8901; e-ISSN 1365-2664
|
Beschikbaar in | Auteurs |
|
Author keywords |
|
Auteurs | Top | |
|
Abstract |
2. This approach to understanding species' shifts was applied to a study of spider diversity and life-history variation in relation to sand dynamics in stabilized and dynamic grey dune landscapes located along the coasts of France, Belgium and the Netherlands. 3. Local (alpha) diversity appeared to decrease with increasing local sand dynamics in both stable and dynamic landscapes. In dynamic dune landscapes, beta-diversity decreased significantly and approached regional (gamma) diversity under local grey dune stabilization; in stabilized landscapes, beta-diversity was not affected by local sand dynamics. 4. Comparative analyses of ecological traits revealed shifts in life-history patterns, suggesting that patterns in local diversity resulted from species sorting. Species from fragments characterized by high sand dynamics showed narrower niche breadths, larger body sizes and longer generation times, while summer-active species tended to become residential after sand stabilization. This provides evidence for constrained species sorting in which natural disturbance (through local sand dynamics) allows only species with distinct ecological traits to persist. 5. Synthesis and applications. Species with larger body sizes, longer generation times and a higher degree of habitat specialization (i.e. related to dispersal ability) would be expected to be more vulnerable at dynamic sites and more prone to extinction than their counterparts from stabilized fragments. In particular, species with a burrowing lifestyle would be expected to go extinct locally as a result of increasing soil development and soil hardness. Shifts in species composition were found to be more pronounced in dynamic landscapes. Hence ensuring conservation of sand dynamics at a landscape level rather than at a local level is of prime importance when aiming to conserve typical psammophilous spider species within local assemblages in grey dune habitats. |
Top | Auteurs |