Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Where is the worm? Predictive modelling of the habitat preferences of the tube-building polychaete Lanice conchilega
Willems, W.; Goethals, P.; Van den Eynde, D.; Van Hoey, G.; Van Lancker, V.; Verfaillie, E.; Vincx, M.; Degraer, S. (2008). Where is the worm? Predictive modelling of the habitat preferences of the tube-building polychaete Lanice conchilega. Ecol. Model. 212(1-2): 74-79. dx.doi.org/10.1016/j.ecolmodel.2007.10.017
In: Ecological Modelling. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0304-3800; e-ISSN 1872-7026
| |
Trefwoorden |
Habitat selection Lanice conchilega (Pallas, 1766) [WoRMS]; Lanice conchilega (Pallas, 1766) [WoRMS]; Polychaeta [WoRMS] Marien/Kust |
Author keywords |
Lanice conchilega; Polychaeta; Habitat preference; Generalized linear models (GLM); Artificial neural networks (ANN) |
Auteurs | | Top |
- Willems, W.
- Goethals, P.
- Van den Eynde, D.
- Van Hoey, G.
|
- Van Lancker, V.
- Verfaillie, E.
- Vincx, M.
- Degraer, S.
|
|
Abstract |
Grab samples to monitor the distribution of marine macrobenthic species (animals >1 mm, living in the sand) are time consuming and give only point based information. If the habitat preference of a species can be modelled, the spatial distribution can be predicted on a full coverage scale from the environmental variables. The modelling techniques Generalized Linear Models (GLM) and Artificial Neural Networks (ANN) were compared in their ability to predict the occurrence of Lanice conchilega, a common tube-building polychaete along the North-western European coastline. Although several types of environmental variables were in the data set (granulometric, currents, nutrients) only three granulometric variables were used in the final models (median grain-size, % mud and % coarse fraction). ANN slightly outperformed GLM for a number of performance indicators (% correct predictions, specificity and sensitivity), but the GLM were more robust in the crossvalidation procedure. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.