Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea
Lenartz, F.; Raick, C.; Soetaert, K.; Grégoire, M. (2007). Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea. J. Mar. Syst. 68(3-4): 327-348. dx.doi.org/10.1016/j.jmarsys.2006.12.001
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963; e-ISSN 1879-1573
| |
Trefwoord |
|
Author keywords |
ecosystems; hydrodynamics; Kalman filters; Ligurian Sea |
Auteurs | | Top |
- Lenartz, F.
- Raick, C.
- Soetaert, K.
- Grégoire, M.
|
|
|
Abstract |
The Ensemble Kalman filter (EnKF) has been applied to a 1-D complex ecosystem model coupled with a hydrodynamic model of the Ligurian Sea. In order to improve the performance of the EnKF, an ensemble subsampling strategy has been used to better represent the covariance matrices and a pre-analysis step for correcting the non-normality of the members distribution has been implemented. Twin experiments have been realized to assess the performance of the developed tool and a real data assimilation experiment has been conducted to hindcast the ecosystem at the Dyfamed site during the year 2000. Finally the performance of the EnKF has been compared with a Singular Evolutive Extended Kalman (SEEK) filter with a fixed basis. We conclude that, on one hand, there is a benefit in using the subsampling strategy and the lognormal transformation with the EnKF, and on the other hand, this filter presents better performance than the fixed basis version of the SEEK filter. However, it also incurs a large computational cost. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.