Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Sediment characterization of intertidal mudflats using remote sensing
Adam, S.; De Backer, A.; Degraer, S.; Monbaliu, J.; Toorman, E.A.; Vincx, M. (2008). Sediment characterization of intertidal mudflats using remote sensing, in: Kusuda, T. et al. Sediment and Ecohydraulics: INTERCOH 2005. Proceedings in Marine Science, 9: pp. 109-124. http://dx.doi.org/10.1016/S1568-2692(08)80011-3
In: Kusuda, T. et al. (Ed.) (2008). Sediment and Ecohydraulics: INTERCOH 2005. Proceedings in Marine Science, 9. Elsevier: Amsterdam. ISBN 978-0-444-53184-1. 518 pp.
In: Proceedings in Marine Science. Elsevier: New York. ISSN 1568-2692; e-ISSN 2352-2860
| |
Beschikbaar in | Auteurs |
|
Documenttype: Congresbijdrage
|
Auteurs | | Top |
- Adam, S.
- De Backer, A.
- Degraer, S.
|
- Monbaliu, J.
- Toorman, E.A.
- Vincx, M.
|
|
Abstract |
In this paper an automated method for hyperspectral image classification is proposed. The method is based on a linear transformation of each spectrum in the hyperspectral cube. Different sediment types and land covers were classified using two dimensions of the transformed data space. The methodology is applied to hyperspectral images of the IJzermonding mudflat, acquired by the Compact Airborne Spectrographic Imager (CASI) in 2001 and 2003. Comparable classification results were obtained using a standard classification method employed in hyperspectral image processing. The similarity between classification results was 82 and 65% for the images of 2001 and 2003, respectively. The superiority of the proposed user-friendly method lies in its autonomy, reliability and objectivity. The proposed method uses the underlying statistical information of the data set, while the standard method is mainly based on expert knowledge. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.