Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model
Khorashadi Zadeh, F.; Nossent, J.; Sarrazin, F.; Pianosi, F.; Van Griensven, A.; Wagener, T.; Bauwens, W. (2017). Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model. Environ. Model. Softw. 91: 210-222. https://dx.doi.org/10.1016/j.envsoft.2017.02.001
In: Environmental Modelling & Software. Elsevier: Oxford. ISSN 1364-8152; e-ISSN 1873-6726
| |
Author keywords |
Global sensitivity analysis;Moment-independent method; Variance-based method; PAWN; Sobol'; SWAT |
Auteurs | | Top |
- Khorashadi Zadeh, F.
- Nossent, J., meer
- Sarrazin, F.
- Pianosi, F.
|
- Van Griensven, A.
- Wagener, T.
- Bauwens, W.
|
|
Abstract |
Global Sensitivity Analysis (GSA) is an essential technique to support the calibration of environmental models by identifying the influential parameters (screening) and ranking them.In this paper, the widely-used variance-based method (Sobol') and the recently proposed moment-independent PAWN method for GSA are applied to the Soil and Water Assessment Tool (SWAT), and compared in terms of ranking and screening results of 26 SWAT parameters. In order to set a threshold for parameter screening, we propose the use of a “dummy parameter”, which has no influence on the model output. The sensitivity index of the dummy parameter is calculated from sampled data, without changing the model equations. We find that Sobol' and PAWN identify the same 12 influential parameters but rank them differently, and discuss how this result may be related to the limitations of the Sobol' method when the output distribution is asymmetric. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.