Welkom op het expertplatform!
Dit platform verschaft informatie en kennis omtrent de WL expertisedomeinen 'hydraulica en sediment', 'havens en waterwegen', 'waterbouwkundige constructies', 'waterbeheer' en 'kustbescherming' - gaande van WL medewerkers met hun expertise, het curriculum van deze instelling, tot publicaties, projecten, data (op termijn) en evenementen waarin het WL betrokken is.
Het WL onderschrijft het belang van "open access" voor de ontsluiting van haar onderzoeksresultaten. Lees er meer over in ons openaccessbeleid.
Reconstruction of ecosystem flows using inverse methods: how well do they work?
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963; e-ISSN 1879-1573
Ook verschenen in:Grégoire, M.; Brasseur, P.; Lermusiaux, P.F.J. (Ed.) (2003). The use of data assimilation in coupled hydrodynamic, ecological and bio-geo-chemical models of the ocean. Selected papers from the 33rd International Liege Colloquium on Ocean Dynamics, held in Liege, Belgium on May 7-11th, 2001. Journal of Marine Systems, 40-41. Elsevier: Amsterdam. 1-406 pp., meer
| |
Trefwoorden |
Analysis > Mathematical analysis > Numerical analysis Cycles > Chemical cycles > Geochemical cycle > Biogeochemical cycle Cycles > Chemical cycles > Geochemical cycle > Biogeochemical cycle > Nutrient cycles > Carbon cycle Cycles > Chemical cycles > Geochemical cycle > Biogeochemical cycle > Nutrient cycles > Nitrogen cycle Ecosystems Food webs Modelling Marien/Kust |
Author keywords |
ecosystem modelling; inverse method; mass balance models; food webs;biogeochemical cycles; numerical experiments; carbon cycling; nitrogencycling |
Abstract |
Inverse modelling is used to synthesize multivariate observations from marine and freshwater ecosystems into descriptions of mass flows among ecological and biogeochemical components. However, the conditions that affect the accuracy of these analyses remain poorly understood. In particular, it is suspected that the steady-state assumption often used in these analyses and the flow minimization principle that underlie inverse modelling introduce distortions into the reconstructions of ecosystem flows, but these potential biases have not been quantitatively investigated. Simulated inverse experiments were conducted to shed some light on these issues. In these experiments, inverse analyses are run on ‘artificial’ observations generated from a mechanistic ecological–biogeochemical model. The simulated experiments indicate that the steady-state assumption has little impact on the accuracy of inverse reconstructions of ecosystem flows. Inverse analyses run on observations from simulations of transient states are as accurate as analyses run on observations from simulations at steady state. The accuracy of inverse reconstructions is related to structural and dynamic features of the ecosystem. Inverse reconstructions on simulated ecosystems with weak nutrient recycling (dependent mostly on external nutrients) or with simple food webs show little bias. Reconstructions of simulated ecosystems with strong recycling or complex food webs show significantly more bias, with a tendency to overestimate small flows and to underestimate large flows. Despite these biases, inverse reconstructions were successful at detecting changes in flow structure associated with changes in simulated ecosystem properties. The simulations also indicate that the inverse analyses based on simultaneous accounting of more than one currency (e.g. carbon+nitrogen) should be preferred over analyses based on balancing only one currency (e.g. carbon or nitrogen). |
IMIS is ontwikkeld en wordt gehost door het VLIZ.