Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Sub-arctic Holocene climatic and oceanographic variability in Stjernsund, northern Norway: evidence from benthic foraminifera andstable isotopes
Joseph, N.; Lopez Correa, M.; Schonfeld, J.; Rüggeberg, A.; Freiwald, A. (2013). Sub-arctic Holocene climatic and oceanographic variability in Stjernsund, northern Norway: evidence from benthic foraminifera andstable isotopes. Boreas 42(3): 511-531. dx.doi.org/10.1111/j.1502-3885.2012.00303.x
In: Boreas. Scandinavian University Press/Wiley-Blackwell: Oslo. ISSN 0300-9483; e-ISSN 1502-3885, more
Peer reviewed article  

Available in  Authors 

Keywords
    Geological time > Phanerozoic > Geological time > Cenozoic > Quaternary > Holocene
    Foraminifera [WoRMS]
    ANE, Sweden [Marine Regions]
    Marine/Coastal

Authors  Top 
  • Joseph, N.
  • Lopez Correa, M.
  • Schonfeld, J.
  • Rüggeberg, A., more
  • Freiwald, A.

Abstract
    A high-resolution record, covering 9.3-0.2ka BP, from the sub-arctic Stjernsund (70 degrees N) was studied for benthic foraminiferal faunas and stable isotopes, revealing three informally named main phases during the Holocene. The Early- to Mid-Holocene (9.3-5.0ka BP) was characterized by the strong influence of the North Atlantic Current (NAC), which prevented the reflection of the Holocene Climatic Optimum (HCO) in the bottom-water temperature. During the Mid-Holocene Transition (5.0-2.5ka BP), a turnover of benthic foraminiferal faunas occurred, Atlantic Water species decreased while Arctic-Polar species increased, and the oxygen isotope record showed larger fluctuations. Those variations correspond to a period of global climate change, to spatially more heterogeneous benthic foraminiferal faunas in the Nordic Seas region, and to regionally diverging terrestrial temperatures. The Cool Late Holocene (2.5-0.2ka BP) was characterized by increased abundances of Arctic-Polar species and a steady cooling trend reflected in the oxygen isotopes. In this period, our record differs considerably from those on the SW Barents Sea shelf and locations farther south. Therefore, we argue that regional atmospheric cooling triggered the late Holocene cooling trend. Several cold episodes centred at approximate to 8.3, approximate to 7.8, approximate to 6.5, approximate to 4.9, approximate to 3.9 and approximate to 3.3ka BP were identified from the benthic foraminiferal faunas and the 18O record, which correlated with marine and atmospherically driven proxy records. This suggests that short-term cold events may result from reduced heat advection via the NAC or from colder air temperatures.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors