Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm
Malkin, S.Y.; Meysman, F.J.R. (2015). Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm. Appl. Environ. Microbiol. 81(3): 948-956. dx.doi.org/10.1128/AEM.02682-14
In: Applied and Environmental Microbiology. American Society for Microbiology: Washington. ISSN 0099-2240; e-ISSN 1098-5336, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Malkin, S.Y., more
  • Meysman, F.J.R., more

Abstract
    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors