Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine-marine food chains
Korsman, J.C.; Schipper, A.M.; de Vos, M.G.; van den Heuvel-Greve, M.J.; Vethaak, A.D.; de Voogt, P.; Hendriks, A.J. (2015). Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine-marine food chains. Chemosphere 138: 33-39. http://dx.doi.org/10.1016/j.chemosphere.2015.05.040
In: Chemosphere. Elsevier: Oxford. ISSN 0045-6535; e-ISSN 1879-1298, more
Peer reviewed article  

Available in  Authors 

Keywords
    Marine/Coastal; Brackish water; Fresh water
Author keywords
    Uptake; Elimination; Biotransformation; Toxicokinetics; Western Scheldt estuary

Authors  Top 
  • Korsman, J.C., more
  • Schipper, A.M.
  • de Vos, M.G.
  • van den Heuvel-Greve, M.J., more
  • Vethaak, A.D., more
  • de Voogt, P., more
  • Hendriks, A.J., more

Abstract
    There are several studies on bioaccumulation and biomagnification of nonylphenol (NP) and its ethoxylates (NPEOs), but their toxico-kinetic mechanisms remain unclear. In the present investigation, we explored the accumulation of NP and NPEOs in estuarine–marine food chains with a bioaccumulation model comprising five trophic levels. Using this model, we estimated uptake and elimination rate constants for NPEOs based on the organisms’ weight and lipid content and the chemicals’ Kow. Further, we calculated accumulation factors for NP and NPEOs, including biota-sediment accumulation factors (BSAF) and biomagnification factors (BMF), and compared these to independent field measurements collected in the Western Scheldt estuary in The Netherlands and field data reported in the literature. The estimated BSAF values for NP and total NPEOs were below 1 for all trophic levels. The estimated BMF values were around 1 for all trophic levels except for the highest level (carnivorous mammals and birds). For this trophic level, the estimated BMF value varied between 0.1 and 2.4, depending on the biotransformation capacity. For all trophic levels, except primary producers, the accumulation estimates that accounted for biotransformation of NPEOs into NP were closer to the field data than model estimates that did not include biotransformation, indicating that NP formation by biotransformation of NPEOs might occur in organisms.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors