Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

The effect of marine algae in the ration of high-yielding dairy cows during transition on metabolic parameters in serum and follicular fluid around parturition
Hostens, M.; Fievez, V.; Vlaeminck, B.; Buyse, J.; Leroy, J.; Piepers, S.; De Vliegher, S.; Opsomer, G. (2011). The effect of marine algae in the ration of high-yielding dairy cows during transition on metabolic parameters in serum and follicular fluid around parturition. J. Dairy Sci. 94(9): 4603-4615. dx.doi.org/10.3168/jds.2010-3899
In: Journal of Dairy Science. American Dairy Science Association/Elsevier: Champaign. ISSN 0022-0302; e-ISSN 1525-3198, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    dairy cow; marine algae; milk fat depression; negative energy balance

Authors  Top 
  • Hostens, M.
  • Fievez, V., more
  • Vlaeminck, B., more
  • Buyse, J., more
  • Leroy, J.
  • Piepers, S.
  • De Vliegher, S.
  • Opsomer, G.

Abstract
    Sixteen Holstein cows were assigned to 2 groups to evaluate the caloric and metabolic effect of feeding marine algae (ALG) from 3 wk prepartum until 12 wk postpartum. Milk production characteristics and the profiles of hormones and metabolites in the serum were monitored from -7 to 46 d in milk (DIM) and in follicular fluid (FF) from 14 to 46 DIM. All cows received a corn- and grass silage-based partially mixed ration supplemented with concentrate and protein supplement. In the diet of the ALG group, 2 kg of the concentrate was replaced by a concentrate containing ALG (44 g/d of docosahexaenoic acid). Diets were isocaloric (net energy basis) and equal in intestinal digestible protein. The ALG diet increased milk yield (41.2 vs. 38.2 kg/d) and decreased milk fat yield (1.181 vs. 1.493 kg/d) and milk fat content (31.6 vs. 40.7 g/kg). Protein yield (1.336 vs. 1.301 kg/d) was not affected but a tendency toward decreased milk protein content (32.8 vs. 34.7 g/kg) was observed. Marine algae supplementation increased the beta-hydroxybutyric acid (BHBA) concentration in FT of the ALG cows compared with that in the controls (0.992 vs. 0.718 mmol/L). The total protein concentration in FF was decreased in ALG (62.9 vs. 67.6 g/L). Plasma and serum metabolites did not significantly differ between treatments except for a tendency toward a lower concentration of urea in the serum of the control compared with ALG (4.69 vs. 5.13 mmol/L). Based on metabolizable energy calculations, a daily energy-sparing effect of 3.48 Mcal was obtained due to milk fat depression (MFD). The concomitant increase in milk yield suggests that at least part of this spared energy is used to stimulate milk production. Theoretically, 3.48 Meal of ME could lead to an increase in milk yield of 7.43 kg/d, which is higher than the observed 3 kg/d. However, when evaluating nutrient requirements during MFD in early lactation, we calculated that increased milk production is caused by a propionate-saving effect of 2.71 mol in the udder when milk fat is depressed. Concurrent increased BHBA concentrations in FF in the ALG group cannot be attributed to a worsened energy status of the animals because all other indicators contradict any change in energy balance, indicating that BHBA. might not be an appropriate metabolic parameter to estimate the energy balance in early lactating dairy cows during MFD.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors