Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Arctic cut-off high drives the poleward shift of a new Greenland melting record
Tedesco, M.; Mote, T.; Fettweis, X.; Hanna, E.; Jeyaratnam, J.; Booth, J.F.; Datta, R.; Briggs, K. (2016). Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nature Comm. 7: 6 pp. https://dx.doi.org/10.1038/ncomms11723
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Tedesco, M.
  • Mote, T.
  • Fettweis, X., more
  • Hanna, E.
  • Jeyaratnam, J.
  • Booth, J.F.
  • Datta, R.
  • Briggs, K.

Abstract
    Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700 +/- 50m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948-2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting melting in the south, where new melting records were set over the past decade.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors