Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Genetic population structure of the convict surgeonfish Acanthurus triostegus: a phylogeographic reassessment across its range
Otwoma, L.M.; Diemel, V.; Reuter, H.; Kochzius, M.; Meyer, A. (2018). Genetic population structure of the convict surgeonfish Acanthurus triostegus: a phylogeographic reassessment across its range. J. Fish Biol. 93(4): 597-608. https://dx.doi.org/10.1111/jfb.13686
In: Journal of Fish Biology. Fisheries Society of the British Isles: London,New York,. ISSN 0022-1112; e-ISSN 1095-8649, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    genetic diversity; Indo-Pacific barrier Kenya; Madagascar; mtDNA;Tanzania

Authors  Top 
  • Otwoma, L.M., more
  • Diemel, V.
  • Reuter, H.
  • Kochzius, M., more
  • Meyer, A.

Abstract
    This study investigates the genetic population structure and connectivity of Acanthurus triostegus in five Indo‐Pacific biogeographic regions (western and eastern Indian Ocean, western, central and eastern Pacific Ocean), using a mitochondrial DNA marker spanning the ATPase8 and ATPase6 gene regions. In order to assess the phylogeography and genetic population structure of A. triostegus across its range, 35 individuals were sampled from five localities in the western Indian Ocean and complemented with 227 sequences from two previous studies. Results from the overall analysis of molecular variance (AMOVA) without a priori grouping showed evidence of significant differentiation in the Indo‐Pacific, with 25 (8.3%) out of 300 pairwise ΦST comparisons being significant. However, the hierarchical AMOVA grouping of Indian and Pacific Ocean populations failed to support the vicariance hypothesis, showing a lack of a genetic break between the two ocean basins. Instead, the correlation between pairwise ΦST values and geographic distance showed that dispersal of A. triostegus in the Indo‐Pacific Ocean follows an isolation‐by‐distance model. Three haplogroups could be deduced from the haplotype network and phylogenetic tree, with haplogroup 1 and 2 dominating the Indian and the Pacific Ocean, respectively, while haplogroup 3 exclusively occurring in the Hawaiian Archipelago of the central Pacific Ocean.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors