Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

The use of Artemia biomass sampling to predict cyst yields in culture ponds
Baert, P.; Anh, N.T.N.; Burch, A.; Sorgeloos, P. (2002). The use of Artemia biomass sampling to predict cyst yields in culture ponds. Hydrobiologia 477(1-3): 149-153. dx.doi.org/10.1023/A:1021025402584
In: Hydrobiologia. Springer: The Hague. ISSN 0018-8158; e-ISSN 1573-5117, more
Peer reviewed article  

Available in  Authors 

Keywords
    Cysts
    Population characteristics > Biomass
    Sampling
    Yield
    Artemia franciscana Kellog, 1906 [WoRMS]; Artemia Leach, 1819 [WoRMS]
    Marine/Coastal; Brackish water
Author keywords
    Artemia sp.; biomass; sampling; volume; cyst yield

Authors  Top 
  • Baert, P.
  • Anh, N.T.N.
  • Burch, A.
  • Sorgeloos, P., more

Abstract
    The possibility of using biomass volume (= mean biomass present in the pond.week-1) to predict the total amount of harvestable cysts (= kg wet weight collected. week-1) produced in a culture pond by an Artemia franciscana population using a mixed model regression was evaluated for two different sampling methods; horizontal transects and vertical point samples. For transects, the following equation was found: `log (0.01 + cyst yields) = -2.05 + 0.025*(biomass volume)' with F(1,4.87) = 8.83 and p = 0.032. For the point samples, the regression was also significant with F(1,55.2) = 13.62 and p = 0.0005 for following equation: `log (0.01 + cyst yield) = -3.613 + 0.021*(biomass volume). As pond effect and interaction terms did not significantly explain a significant portion of the variance for either of the sampling methods (Transects: pond: F(3,14.3) = 2.48; p = 0.103; pond*biomass volume: F(3,3.61) = 4.63; p = 0.0976; Point samples: pond: F(3,44.5) = 0.00; p = 0.999; pond*biomass volume: F(3,44.2) = 0.11; p = 0.954), the variable pond (repeated measurement factor) was not included in the final calculations for the regression equations. Although a combination of factors influences the equation, the high significance levels of the regression indicate biomass volume can be safely used to predict production trends. The low investment requirements of this method make it especially attractive for on farm use, where correctly determining the point of cyst decline will help farmers to allocate resources where needed.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors