Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Large-scale experiments to improve monopile scour protection design adapted to climate change - The PROTEUS project
Arboleda Chavez, C.E.; Stratigaki, V.; Wu, M.; Troch, P.; Schendel, A.; Welzel, M.; Villanueva, R.; Schlurmann, T.; De Vos, L.; Kisacik, D.; Pinto, F.T.; Fazeres-Ferradosa, T.; Santos, P.R.; Baelus, L.; Szengel, V.; Bolle, A.; Whitehouse, R.; Todd, D. (2019). Large-scale experiments to improve monopile scour protection design adapted to climate change - The PROTEUS project. Energies (Basel) 12(9): 1709. https://dx.doi.org/10.3390/en12091709
In: Energies (Basel). Molecular Diversity Preservation International (MDPI): Basel. ISSN 1996-1073; e-ISSN 1996-1073, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    offshore wind turbines; large scale experiments; scour protectiondamage; wide-graded materials; climate change conditions; opticalmeasurements; acoustic measurements; waves-current interaction

Authors  Top 
  • Arboleda Chavez, C.E., more
  • Stratigaki, V., more
  • Wu, M., more
  • Troch, P., more
  • Schendel, A.
  • Welzel, M.
  • Villanueva, R.
  • Schlurmann, T.
  • De Vos, L., more
  • Kisacik, D., more
  • Pinto, F.T.
  • Fazeres-Ferradosa, T.
  • Santos, P.R.
  • Baelus, L., more
  • Szengel, V., more
  • Bolle, A., more
  • Whitehouse, R.
  • Todd, D.

Abstract
    This study aims to improve the design of scour protection around offshore wind turbine monopiles, as well as future-proofing them against the impacts of climate change. A series of large-scale experiments have been performed in the context of the European HYDRALAB-PLUS PROTEUS (Protection of offshore wind turbine monopiles against scouring) project in the Fast Flow Facility in HR Wallingford. These experiments make use of state of the art optical and acoustic measurement techniques to assess the damage of scour protections under the combined action of waves and currents. These novel PROTEUS tests focus on the study of the grading of the scour protection material as a stabilizing parameter, which has never been done under the combined action of waves and currents at a large scale. Scale effects are reduced and, thus, design risks are minimized. Moreover, the generated data will support the development of future scour protection designs and the validation of numerical models used by researchers worldwide. The testing program objectives are: (i) to compare the performance of single-layer wide-graded material used against scouring with current design practices; (ii) to verify the stability of the scour protection designs under extreme flow conditions; (iii) to provide a benchmark dataset for scour protection stability at large scale; and (iv) to investigate the scale effects on scour protection stability.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors