Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Population genetic structure of the Asian bush mosquito, Aedes japonicus (Diptera, Culicidae), in Belgium suggests multiple introductions
Smitz, N.; De Wolf, K.; Deblauwe, I.; Kampen, H.; Schaffner, F.; De Witte, J.; Schneider, A.; Verlé, I.; Vanslembrouck, A.; Dekoninck, W.; Meganck, K.; Gombeer, S.; Vanderheyden, A.; De Meyer, M.; Backeljau, T.; Werner, D.; Müller, R.; Van Bortel, W. (2021). Population genetic structure of the Asian bush mosquito, Aedes japonicus (Diptera, Culicidae), in Belgium suggests multiple introductions. Parasites & Vectors 14(1): 179. https://dx.doi.org/10.1186/s13071-021-04676-8
In: Parasites & Vectors. BIOMED CENTRAL LTD: London. e-ISSN 1756-3305, more
Peer reviewed article  

Available in  Authors 

Keywords
    Hexapoda > Arthropods > Insects > Diptera > Culicidae > Aedes > Aedes japonicus
    Terrestrial

Authors  Top 
  • Smitz, N., more
  • De Wolf, K.
  • Deblauwe, I.
  • Kampen, H.
  • Schaffner, F.
  • De Witte, J.
  • Schneider, A.
  • Verlé, I.
  • Vanslembrouck, A.
  • Dekoninck, W.
  • Meganck, K.
  • Gombeer, S.
  • Vanderheyden, A.
  • De Meyer, M.
  • Backeljau, T., more
  • Werner, D.
  • Müller, R.
  • Van Bortel, W.

Abstract

    Background

    Aedes japonicus japonicus has expanded beyond its native range and has established in multiple European countries, including Belgium. In addition to the population located at Natoye, Belgium, locally established since 2002, specimens were recently collected along the Belgian border. The first objective of this study was therefore to investigate the origin of these new introductions, which were assumed to be related to the expansion of the nearby population in western Germany. Also, an intensive elimination campaign was undertaken at Natoye between 2012 and 2015, after which the species was declared to be eradicated. This species was re-detected in 2017, and thus the second objective was to investigate if these specimens resulted from a new introduction event and/or from a few undetected specimens that escaped the elimination campaign.

    Methods

    Population genetic variation at nad4 and seven microsatellite loci was surveyed in 224 and 68 specimens collected in Belgium and Germany, respectively. German samples were included as reference to investigate putative introduction source(s). At Natoye, 52 and 135 specimens were collected before and after the elimination campaign, respectively, to investigate temporal changes in the genetic composition and diversity.

    Results

    At Natoye, the genotypic microsatellite make-up showed a clear difference before and after the elimination campaign. Also, the population after 2017 displayed an increased allelic richness and number of private alleles, indicative of new introduction(s). However, the Natoye population present before the elimination programme is believed to have survived at low density. At the Belgian border, clustering results suggest a relation with the western German population. Whether the introduction(s) occur via passive human-mediated ground transport or, alternatively, by natural spread cannot be determined yet from the dataset.

    Conclusion

    Further introductions within Belgium are expected to occur in the near future, especially along the eastern Belgian border, which is at the front of the invasion of Ae. japonicus towards the west. Our results also point to the complexity of controlling invasive species, since 4 years of intense control measures were found to be not completely successful at eliminating this exotic at Natoye.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors