Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Surface ocean warming and acidification driven by rapid carbon release precedes Paleocene-Eocene Thermal Maximum
Babila, T.L.; Penman, D.E.; Standish, C.D.; Doubrawa, M.; Bralower, T.J.; Robinson, M.M.; Self-Trail, J.M.; Speijer, R.P.; Stassen, P.; Foster, G.L.; Zachos, J.C. (2022). Surface ocean warming and acidification driven by rapid carbon release precedes Paleocene-Eocene Thermal Maximum. Science Advances 8(11): eabg1025. https://dx.doi.org/10.1126/sciadv.abg1025
In: Science Advances. AAAS: New York. e-ISSN 2375-2548, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Babila, T.L.
  • Penman, D.E.
  • Standish, C.D.
  • Doubrawa, M., more
  • Bralower, T.J.
  • Robinson, M.M.
  • Self-Trail, J.M.
  • Speijer, R.P., more
  • Stassen, P., more
  • Foster, G.L.
  • Zachos, J.C.

Abstract
    The Paleocene-Eocene Thermal Maximum (PETM) is recognized by a major negative carbon isotope (δ13C) excursion (CIE) signifying an injection of isotopically light carbon into exogenic reservoirs, the mass, source, and tempo of which continue to be debated. Evidence of a transient precursor carbon release(s) has been identified in a few localities, although it remains equivocal whether there is a global signal. Here, we present foraminiferal δ13C records from a marine continental margin section, which reveal a 1.0 to 1.5‰ negative pre-onset excursion (POE), and concomitant rise in sea surface temperature of at least 2°C and a decline in ocean pH. The recovery of both δ13C and pH before the CIE onset and apparent absence of a POE in deep-sea records suggests a rapid (< ocean mixing time scales) carbon release, followed by recovery driven by deep-sea mixing. Carbon released during the POE is therefore likely more similar to ongoing anthropogenic emissions in mass and rate than the main CIE.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors