Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

PARASO, a circum-Antarctic fully coupled ice-sheet-ocean-sea-ice-atmosphere-land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSM05.0 and CLM4.5
Pelletier, C.; Fichefet, T.; Goosse, H.; Haubner, K.; Helsen, S.; Huot, P.-V.; Kittel, C.; Klein, F.; Le Clec'h, S.; van Lipzig, N.P.M.; Marchi, S.; Massonnet, F.; Mathiot, P.; Moravveji, E.; Moreno-Chamarro, E.; Ortega, P.; Pattyn, F.; Souverijns, N.; Van Achter, G.; Vanden Broucke, S.; Vanhulle, A.; Verfaillie, D.; Zipf, L. (2022). PARASO, a circum-Antarctic fully coupled ice-sheet-ocean-sea-ice-atmosphere-land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSM05.0 and CLM4.5. Geosci. Model Dev. 15(2): 553-594. https://dx.doi.org/10.5194/gmd-15-553-2022
In: Geoscientific Model Development. Copernicus Publications: Göttingen. ISSN 1991-959X; e-ISSN 1991-9603, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Le Clec'h, S., more
  • van Lipzig, N.P.M.
  • Marchi, S., more
  • Massonnet, F., more
  • Mathiot, P., more
  • Moravveji, E., more
  • Moreno-Chamarro, E.
  • Ortega, P.
  • Pattyn, F., more
  • Souverijns, N., more
  • Van Achter, G., more
  • Vanden Broucke, S., more
  • Vanhulle, A., more
  • Verfaillie, D., more
  • Zipf, L., more

Abstract
    We introduce PARASO, a novel five-component fully coupled regional climate model over an Antarctic circumpolar domain covering the full Southern Ocean. The state-of-the-art models used are the fast Elementary Thermomechanical Ice Sheet model (f.ETISh) v1.7 (ice sheet), the Nucleus for European Modelling of the Ocean (NEMO) v3.6 (ocean), the Louvain-la-Neuve sea-ice model (LIM) v3.6 (sea ice), the COnsortium for Small-scale MOdeling (COSMO) model v5.0 (atmosphere) and its CLimate Mode (CLM) v4.5 (land), which are here run at a horizontal resolution close to 1/4 degrees. One key feature of this tool resides in a novel two-way coupling interface for representing ocean- ice-sheet interactions, through explicitly resolved ice-shelf cavities. The impact of atmospheric processes on the Antarctic ice sheet is also conveyed through computed COSMO-CLM-f.ETISh surface mass exchange. In this technical paper, we briefly introduce each model's configuration and document the developments that were carried out in order to establish PARASO. The new offline-based NEMO-f.ETISh coupling interface is thoroughly described. Our developments also include a new surface tiling approach to combine open-ocean and sea-ice-covered cells within COSMO, which was required to make this model relevant in the context of coupled simulations in polar regions. We present results from a 2000-2001 coupled 2-year experiment. PARASO is numerically stable and fully operational. The 2-year simulation conducted without fine tuning of the model reproduced the main expected features, although remaining systematic biases provide perspectives for further adjustment and development.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors