Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Ice-dynamical glacier evolution modeling - A review
Zekollari, H.; Huss, M.; Farinotti, D.; Lhermitte, S. (2022). Ice-dynamical glacier evolution modeling - A review. Rev. Geophys. 60(2): e2021RG000754. https://dx.doi.org/10.1029/2021RG000754
In: Reviews of Geophysics. AMER GEOPHYSICAL UNION: Washington, D.C.. ISSN 8755-1209; e-ISSN 1944-9208, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    glacier; modeling; mass balance; evolution; ice; dynamics

Authors  Top 
  • Zekollari, H., more
  • Huss, M.
  • Farinotti, D.
  • Lhermitte, S., more

Abstract
    Glaciers play a crucial role in the Earth System: they are important water suppliers to lower-lying areas during hot and dry periods, and they are major contributors to the observed present-day sea-level rise. Glaciers can also act as a source of natural hazards and have a major touristic value. Given their societal importance, there is large scientific interest in better understanding and accurately simulating the temporal evolution of glaciers, both in the past and in the future. Here, we give an overview of the state of the art of simulating the evolution of individual glaciers over decadal to centennial time scales with ice-dynamical models. We hereby highlight recent advances in the field and emphasize how these go hand-in-hand with an increasing availability of on-site and remotely sensed observations. We also focus on the gap between simplified studies that use parameterizations, typically used for regional and global projections, and detailed assessments for individual glaciers, and explain how recent advances now allow including ice dynamics when modeling glaciers at larger spatial scales. Finally, we provide concrete recommendations concerning the steps and factors to be considered when modeling the evolution of glaciers. We suggest paying particular attention to the model initialization, analyzing how related uncertainties in model input influence the modeled glacier evolution and strongly recommend evaluating the simulated glacier evolution against independent data.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors