Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Summer hydrography and circulation in Storfjorden Svalbard, following a record low winter sea-ice extent in the Barents Sea
Vivier, F.; Lourenço, A.; Michel, E.; Skogseth, R.; Rousset, C.; Lansard, B.; Bouruet-Aubertot, P.; Boutin, J.; Bombled, B.; Cuypers, Y.; Crispi, O.; Dausse, D.; Le Goff, H.; Madec, G.; Vancoppenolle, M.; Van der Linden, F.; Waelbroeck, C. (2023). Summer hydrography and circulation in Storfjorden Svalbard, following a record low winter sea-ice extent in the Barents Sea. JGR: Oceans 128(2): e2022JC018648. https://dx.doi.org/10.1029/2022JC018648
In: Journal of Geophysical Research-Oceans. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9275; e-ISSN 2169-9291, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Storfjord; Svalbard; Arctic; Barents Sea; BSW; Atlantification

Authors  Top 
  • Vivier, F.
  • Lourenço, A., illustrator
  • Michel, E.
  • Skogseth, R.
  • Rousset, C.
  • Lansard, B.
  • Bouruet-Aubertot, P.
  • Boutin, J.
  • Bombled, B.
  • Cuypers, Y.
  • Crispi, O.
  • Dausse, D.
  • Le Goff, H.
  • Madec, G.
  • Vancoppenolle, M., more
  • Van der Linden, F., more
  • Waelbroeck, C.

Abstract
    Storfjorden, Svalbard, hosts a polynya in winter and is an important source region of Brine-enriched Shelf Water (BSW) that, if dense enough, feeds the Arctic Ocean deep water reservoir. Changes in the BSW production may thus have far-reaching impacts. We analyze the water mass distribution and circulation in Storfjorden and the trough south of it, Storfjordrenna, using hydrographic sections occupied in July 2016, following a winter characterized by the lowest ice coverage recorded in the Barents Sea. These observations reveal an unusual hydrographic state, characterized at the surface by the near absence of Melt Water and Storfjorden Surface Water, replaced by a saltier water mass. At depth, BSW (maximum salinity of 34.95) was found from the bottom up to 90 m, above the 120-m deep sill at the mouth to Storfjordrenna. However, no gravity driven overflow was observed downstream of the sill: the dome of BSW remained locked over the depression in a cyclonic circulation pattern consistent with a stratified Taylor column. Observations further reveal a previously unreported intrusion of Atlantic Water (AW) far into the fjord, promoting isopycnal mixing with entrapped Arctic Water. This intrusion was possibly favored by positive wind stress curl anomalies over Svalbardbanken and Storfjordrenna. The bottom plume exiting Storfjordrenna was weak, carrying Polar Front Water rather than BSW, too light to sink underneath the AW layer at Fram Strait. Whether Storfjorden switched durably to a new hydrographic state, following the observed Atlantification of the Barents Sea after 2005, remains to be established.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors