Property fields in an effluent plume of the Mississippi river
Hitchcock, G.L.; Wiseman Jr., W.J.; Boicourt, W.C.; Mariano, A.J.; Walker, N.; Nelsen, T.A.; Ryan, E. (1997). Property fields in an effluent plume of the Mississippi river. J. Mar. Syst. 12(1-4): 109-126. https://dx.doi.org/10.1016/S0924-7963(96)00092-9
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963; e-ISSN 1879-1573, more
Also appears in:Ruddick, K. (1997). Processes in regions of freshwater influence (PROFILE): selected papers from the 27th International Liège Colloquium on Ocean Hydrodynamics, held in Liège, Belgium, on May 8-12, 1995. Journal of Marine Systems, 12(1-4). Elsevier: The Netherlands. 1-326 pp., more
| |
Keywords |
Marine/Coastal; Fresh water |
Authors | | Top |
- Hitchcock, G.L.
- Wiseman Jr., W.J.
- Boicourt, W.C.
- Mariano, A.J.
|
- Walker, N.
- Nelsen, T.A.
- Ryan, E.
|
|
Abstract |
Surface property distributions were mapped in the Mississippi River plume during May and August 1993 while following surface drifters. Prevailing winds were the primary factor controlling the orientation of the plume. In May, under typical southeasterly winds, the plume turned anticyclonically towards the coast, while in August, under anomalous westerly winds, the plume turned east. Remote imagery of sea surface temperature and suspended sediments confirmed the direction of the plume. Optimally interpolated maps of surface salinity, temperature, chlorophyll a fluorescence, and transmissivity from underway sampling, and periodic nutrient samples, reveal the plume structure. In May concentrations of nitrate, silicate, and phosphate decreased linearly with increasing salinity. Chlorophyll a increased to peak concentrations of 10 μg 1−1 in the plume, although higher pigment biomass was observed near the coast. In August nitrate and silicate concentrations decreased conservatively near the mouth of SW Pass, except where pigment biomass was enhanced in a convergent surface front. Surface nutrient concentrations in the plume also decreased with increasing salinity. The observations provide the first Lagrangian view of surface property distributions in the Mississippi River plume, and indicate that significant temporal variability exists in physical and biological properties within a day after waters are discharged from the river delta. |
|