Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Low nutrient availability reduces high-irradiance–induced viability loss inoceanic phytoplankton
Kulk, G.; van de Poll, W.H.; Visser, R.J.W.; Buma, A.G.J. (2013). Low nutrient availability reduces high-irradiance–induced viability loss inoceanic phytoplankton. Limnol. Oceanogr. 58(5): 1747–1760. http://dx.doi.org/10.4319/lo.2013.58.5.1747
In: Limnology and Oceanography. American Society of Limnology and Oceanography: Waco, Tex., etc. ISSN 0024-3590; e-ISSN 1939-5590, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Kulk, G.
  • van de Poll, W.H., more
  • Visser, R.J.W.
  • Buma, A.G.J.

Abstract
    In situ viability of oceanic phytoplankton may be relatively low in open oceans. This is assumed to be related to the high-irradiance and low-nutrient conditions typical for oligotrophic regions. However, experimental evidence for this phenomenon was not yet available. In the present study, the importance of nutrient availability in high-irradiance–induced viability loss was therefore studied for three key oceanic phytoplankton species. Prochlorococcus marinus, Ostreococcus sp., and Thalassiosira oceanica were acclimated to two different N : P ratios. Growth, viability, and photophysiology were assessed under nutrient-replete and N- and P-starved conditions. Simultaneously, high-irradiance–induced photoinhibition and viability loss were measured and three inhibitors were used to investigate the underlying physiological mechanisms contributing to viability loss. High-irradiance exposure caused viability loss in P. marinus and Ostreococcus sp., but not in T. oceanica. Low-nutrient availability enhanced survival during high-irradiance exposure, although species-specific differences were observed. The lower sensitivity to high-irradiance intensities at low-nutrient availability was related to conformational changes in photosystem II in P. marinus, to enhanced photoprotection by the xanthophyll pigment cycle and alternative electron transport in Ostreococcus sp., and to enhanced photoprotection by the xanthophyll pigment cycle in T. oceanica. Climate change may lead to enhanced stratification in the open ocean. The resulting increase in the average irradiance intensity phytoplankton experience may promote viability loss in the smallest phytoplankton size fraction. However, this effect may partially be counteracted by the simultaneously expected decrease in nutrient availability.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors