Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Investigation into the nonā€linear hydrodynamical processes in the Scheldt River: idealised processes study
Dijkstra, Y.M. (2022). Investigation into the nonā€linear hydrodynamical processes in the Scheldt River: idealised processes study. Version 4.0. FHR reports, 15_039_1. Flanders Hydraulics Research: Antwerp. VII, 25 + 9 p. app. pp.
Part of: FHR reports. Flanders Hydraulics Research: Antwerp, more

Available in  Author 
Document type: Project report

Keywords
    Hydraulics and sediment > Hydrodynamics > Tides
    Hydraulics and sediment > Hydrodynamics > Turbulence
    Hydraulics and sediment > Hydrodynamics > Water levels
    Numerical modelling
    Belgium, Schelde R. [Marine Regions]
Author keywords
    Estuaries; hydraulic roughness

Project Top | Author 
  • AvdT - Uitbreiding geĆÆdealiseerd hydrodynamisch model, more

Contact details

Proposer: Vlaams-Nederlandse Scheldecommissie (VNSC), more


Author  Top 
  • Dijkstra, Y.M.

Abstract
    This study presents an investigation into the nonā€linear hydrodynamics in the Scheldt River estuary using the twoā€dimensional vertical (2DV) idealised iFlow model. It extends the earlier study by Brouwer et al. (2017) on weakly nonā€linear hydrodynamics by including higherā€order nonā€linear physical mechanisms and nonā€linear parametrisations of turbulent mixing. The goals of this study are to a) simplify the calibration of the model, by reducing the number of calibration parameters from two to one, (b) improve the performance of the idealised iFlow model in the Upper Sea Scheldt and (c) understand the essential physical mechanisms required for such improved performance.
    The k āˆ’ Īµ turbulence closure model was used to derive linear and nonā€linear parametrisations of turbulence that depend only on one calibration parameter. The calibration yields a clear best fit for the M2 tide, while no single best value for the M4 tide could be found. The result of the calibration on the M2 tide yields a good description of this tidal component, though the amplitude is overestimated in the Upper Sea Scheldt when using the linear model. The M4 tidal amplitude is typically overestimated by the model in the whole estuary. The relative phase of both the M2 and M4 tidal components are well described.
    The higherā€order nonā€linear mechanisms are insignificant for the Western Scheldt and Lower Sea Scheldt, but are important in the Upper Sea Scheldt. The model shows a further setā€up of the M2 tide in the Upper Sea Scheldt as a consequence of these mechanisms. This setā€up increases the discrepancy between modelled and measured water levels. Damping of the M2 tide is achieved by including a nonā€linear description of turbulent mixing. This description relates turbulent mixing to the local velocity magnitude. The relatively high tidal velocity in the Upper Sea Scheldt then produces additional mixing and therefore damping of the tide. An additional source of damping is found by including time variations of turbulent mixing on the tidal timeā€scale. This also improves the correspondence between the modelled and measured M4 tide. Nevertheless, the error in the modelled M4 tidal amplitude remains large, with values up to 100%. The total effect of all nonā€linear terms and turbulent mixing improve the result compared to that of Brouwer et al. (2017), but do nevertheless not produce a sufficient degree of damping of the tide in the Upper Sea Scheldt. It is therefore concluded that a change in the roughness value or the representative depth of the system is required to further improve the model result.
    The additional physical mechanisms studied in this report do not lead to a qualitative change in measures of tidal asymmetry. Although these measures provide an indication for the direction of the net sediment transport, the effect of nonā€linear terms on the net sediment transport remains to be investigated.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author