Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Multistability in a coupled ocean-atmosphere reducedā€order model: nonlinear temperature equations
Hamilton, O.; Demaeyer, J.; Vannitsem, S.; Crucifix, M. (2023). Multistability in a coupled ocean-atmosphere reducedā€order model: nonlinear temperature equations. Q. J. R. Meteorol. Soc. 149(757): 3423-3439. https://dx.doi.org/10.1002/qj.4564
In: Quarterly Journal of the Royal Meteorological Society. Royal Meteorological Society: Bracknell, Berks. ISSN 0035-9009; e-ISSN 1477-870X, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 

Abstract
    Multistabilities in the oceanā€“atmosphere flow were found in a reduced-order oceanā€“atmosphere coupled model, by solving the nonlinear temperature equations numerically. In this article, we explain how the full nonlinear Stefanā€“Bolzmann law was implemented numerically and the resulting change to the system dynamics was compared with the original model where these terms were linearised. Multiple stable solutions were found that display distinct oceanā€“atmosphere flows, as well as different Lyapunov stability properties. In addition, distinct low-frequency variability (LFV) behaviour was observed in multiple attractors. We investigated the impact on these solutions of changing the magnitude of the oceanā€“atmospheric coupling, as well as the atmospheric emissivity, to simulate an increasing greenhouse effect. Where multistabilities exist for fixed parameters, the possibility for tipping between solutions was investigated, but tipping did not occur in this version of the model where there is a constant solar forcing. This study was undertaken using a reduced-order coupled quasigeostrophic oceanā€“atmosphere model.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors