Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [208615]
Influence of biota on spatial and temporal variation in sediment erodability and material flux on a tidal flat (Westerschelde, The Netherlands)
Widdows, J.; Brinsley, M.D.; Salkeld, P.N.; Lucas, C.H. (2000). Influence of biota on spatial and temporal variation in sediment erodability and material flux on a tidal flat (Westerschelde, The Netherlands). Mar. Ecol. Prog. Ser. 194: 23-37
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Sediment erosion; Flumes; Benthic-pelagic exchange; Tidal flats; Benthic macrofauna; Microphytobenthos; Biodeposition; Westerschelde

Authors  Top 
  • Widdows, J., more
  • Brinsley, M.D.
  • Salkeld, P.N.
  • Lucas, C.H.

Abstract
    Annular flumes were used to quantify benthic-pelagic exchanges in relation to changes in current velocity and sediment biota. Various physical, chemical and biological parameters were determined for 4 sites on the Molenplaat tidal flat in the Westerschelde (The Netherlands) during 2 field campaigns in May-June and August-September 1996. These included: the mass of sediment eroded, maximum and mean erosion rates, critical erosion velocity (Ucrit), suspension feeding/biodeposition rate, oxygen and ammonium fluxes, density of macrofauna species, chlorophyll a (chl a), colloidal carbohydrate, and physical properties of the sediment. The study showed marked and statistically significant spatial and temporal differences in the potential for sediment erosion. Sites in the centre of the tidal flat were less erodable than those on the edge. All sites on the tidal flat had a significantly (p < 0.001) lower erosion potential in June (i.e. higher Ucrit and lower erosion rates) compared to September. The presence of a well-developed microphytobenthos community in June resulted in a statistically significant relationship between Ucrit and chl a/colloidal carbohydrate (r = +0.85, p = 0.01). There was a significant relationship (r = +0.88, p = 0.005) between sediment erodability (mass of sediment eroded and erosion rate) and the density of the clam Macoma balthica, a major bioturbator of the surface sediments. Analysis of the data also demonstrated significant relationships between clearance rate and Cerastoderma edule biomass (r = +0.91, p < 0.001), and between sediment chl a/colloidal carbohydrate and C. edule biomass (r = +0.92; p < 0.001), reflecting the influence of suspension feeders on both the water column and the sediment, through their biodeposits. The significant increase in sediment erodability between June and September reflected the shift in the overall balance between the major 'biostabilisers' (microphytobenthos) and 'bio-destabilisers' (bioturbating bivalves). This interpretation of field-derived correlations is consistent with previously established relationships and mechanistic understanding derived from controlled flume experiments.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors