Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [210730]
Wave run-up on slender piles in design conditions - Model tests and design rules for offshore wind
Andersen, T.L.; Frigaard, P.; Damsgaard, M.L.; De Vos, L. (2011). Wave run-up on slender piles in design conditions - Model tests and design rules for offshore wind. Coast. Eng. 58(4): 281-289. dx.doi.org/10.1016/j.coastaleng.2010.10.002
In: Coastal Engineering: An International Journal for Coastal, Harbour and Offshore Engineers. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0378-3839; e-ISSN 1872-7379, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Wave run-up; Offshore wind turbine; Entrance platforms; Model tests;

Authors  Top 
  • Andersen, T.L.
  • Frigaard, P.
  • Damsgaard, M.L.
  • De Vos, L., more

Abstract
    Wave run-up on foundations is a very important factor in the design of entrance platforms for offshore wind turbines. When the Horns Reef 1 wind turbine park in Denmark was designed the vertical wave run-up phenomenon was not well known in the.industry, hence not sufficiently considered in the design of Horns Reef 1. As a consequence damage was observed on the platforms. This has been the situation for several sites and design tools for platform loads are lacking. As a consequence a physical model test study was initiated at Aalborg University to clarify wave run-up on cylindrical piles for different values of diameter to water depth ratios (D/h) and different wave heights to water depth ratios (H/h) for both regular and irregular waves. A calculation model is calibrated based on stream function theory for crest kinematics and velocity head stagnation theory. Due to increased velocities close to the pile an empirical factor is included on the velocity head. The evaluation of the calculation model shows that an accurate design rule can be established even in breaking wave conditions. However, calibration of a load model showed that it was necessary to increase the run-up factor on the velocity head by 40% to take into account the underestimation of run-up for breaking or nearly breaking waves given that they produce thin run-up wedges and air entrainment, two factors not coped with by the measurement system.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors