Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [210738]
Numerical simulation of landslide-induced water wave kinematics by LVOF
Li, T.Q.; Troch, P.; De Rouck, J. (2009). Numerical simulation of landslide-induced water wave kinematics by LVOF, in: McKee Smith, J. (Ed.) Proceedings of the 31st International Conference on Coastal Engineering 2008, Hamburg, Germany, 31 August to 5 September 2008. pp. 1249-1261
In: McKee Smith, J. (Ed.) (2009). Proceedings of the 31st International Conference on Coastal Engineering 2008, Hamburg, Germany, 31 August to 5 September 2008. World Scientific: Hackensack, NJ (USA). ISBN 978-981-4277-36-5. 5 vol. pp., more

Available in  Authors 
Document type: Conference

Authors  Top 

Abstract
    By implementing our design of the mass-force coupling scheme for slamming([6,7]), we present some results for case studies related to landslide-induced tsunami modelling in a numerical wave tank, based on our highly efficient Navier-Stokes solver([4,5]), named LVOF. LVOF is constructed by a novel VOF finite volume approach that incorporates surface tension, coupled with a dynamic subgrid-scale (SGS) turbulence model. Theoretically, our mass-force coupling model represents the coupling of a moving rigid body on the flow. More importantly, landslides are treated as a fluid, leading to the resulting discrete equations are resolved over the entire domain. Test cases concern aerial and submerged landslides in 2D and 3D, respectively. By comparison, our design of the model is of high efficiency according to the contributions from the mass-force term, raising in the Navier-Stokes equations. On the other hand, our results can also provide valuable base for the analysis of near-field characteristics of landslide generated impulsive waves, by LVOF.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors