Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [238250]
Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons
Zhou, J.; Delille, B.; Eicken, H.; Vancoppenolle, M.; Brabant, F.; Carnat, G.; Geilfus, N.X.; Papakyriakou, T.; Heinesch, B.; Tison, J.-L. (2013). Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons. J. Geophys. Res. Oceans, 118(6): 3172-3189. dx.doi.org/10.1002/jgrc.20232
In: Journal of Geophysical Research. American Geophysical Union: Richmond. ISSN 0148-0227; e-ISSN 2156-2202, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    barrow; sea ice; brine; Ra; isotope; nutrient; chlorophyll-a; argon

Authors  Top 
  • Zhou, J., more
  • Delille, B., more
  • Eicken, H.
  • Vancoppenolle, M.
  • Brabant, F., more
  • Carnat, G., more
  • Geilfus, N.X.
  • Papakyriakou, T.
  • Heinesch, B.
  • Tison, J.-L., more

Abstract
    The impacts of the seasonal evolution of sea-ice physical properties on ice-ocean biogeochemical exchanges were investigated in landfast ice at Barrow (Alaska) from January through June 2009. Three stages of brine dynamics across the annual cycle have been identified based on brine salinity, brine volume fraction, and porous medium Rayleigh number (Ra). These are sea-ice bottom-layer convection, full-depth convection, and brine stratification. We further discuss the impact of brine dynamics on biogeochemical compounds in sea ice: stable isotopes of water (dD, d18O), nutrients (NO3-, PO43-, NH4+), microalgae (chlorophyll-a), and inert gas (argon). In general, full-depth convection events favor exchanges between sea ice and seawater, while brine stratification limits these exchanges. However, argon responds differently to brine dynamics than the other biogeochemical compounds analyzed in this study. This contrast is attributed to the impact of bubble nucleation on inert gas transport compared to the other biogeochemical compounds. We present a scenario for argon bubble formation and evolution in sea ice and suggest that a brine volume fraction approaching 7.5–10% is required for inert gas bubbles to escape from sea ice to the atmosphere.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors