Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [247024]
Brominated and phosphorus flame retardants in White-tailed Eagle Haliaeetus albicilla nestlings: bioaccumulation and associations with dietary proxies (d13C, d15N and d34S)
Eulaers, I.; Jaspers, V.L.B.; Halley, J; Lepoint, G.; Nygard, T; Pinxten, R.; Covaci, A.; Eens, M. (2014). Brominated and phosphorus flame retardants in White-tailed Eagle Haliaeetus albicilla nestlings: bioaccumulation and associations with dietary proxies (d13C, d15N and d34S). Sci. Total Environ. 478: 48-57. dx.doi.org/10.1016/j.scitotenv.2014.01.051
In: Science of the Total Environment. Elsevier: Amsterdam. ISSN 0048-9697; e-ISSN 1879-1026, more
Peer reviewed article  

Available in  Authors 

Keywords
    Haliaeetus albicilla (Linnaeus, 1758) [WoRMS]
    Marine/Coastal
Author keywords
    BFR; Feather; Haliaeetus albicilla; Stable isotope; PFR

Authors  Top 
  • Eulaers, I., more
  • Jaspers, V.L.B., more
  • Halley, J
  • Lepoint, G., more
  • Nygard, T
  • Pinxten, R., more
  • Covaci, A., more
  • Eens, M., more

Abstract
    Very little is known on the exposure of high trophic level species to current-use brominated (BFRs) and phosphorus flame retardants (PFRs), although observations on their persistence, bioaccumulation potential, and toxicity have been made. We investigated the accumulation of BFRs and PFRs, and their associations with dietary proxies (d13C, d15N and d34S), in plasma and feathers of White-tailed Eagle Haliaeetus albicilla nestlings from Trøndelag, Norway. In addition to accumulation of a wide range of polybrominated diphenyl ether (PBDE) congeners in both plasma and feathers, all non-PBDE BFRs and PFRs could be measured in feathers, while in plasma only two of six PFRs, i.e. tris-(2-chloroisopropyl) phosphate (TCIPP) and tris-(2,3-dichloropropyl) phosphate (TDCPP) were detected. PFR concentrations in feathers (0.95–3000 ng g- 1) were much higher than selected organochlorines (OCs), such as polychlorinated biphenyl 153 (CB 153; 2.3–15 ng g- 1) and dichlorodiphenyldichloroethylene (p,p'-DDE; 2.3–21 ng g- 1), PBDEs (0.03–2.3 ng g- 1) and non-PBDE BFRs (0.03–1.5 ng g- 1). Non-significant associations of PFR concentrations in feathers with those in plasma (P = 0.74), and their similarity to reported atmospheric PFR concentrations, may suggest atmospheric PFR deposition on feathers. Most OCs and PBDEs, as well as tris(chloroethyl) phosphate (TCEP), tris(phenyl) phosphate (TPHP) and tri-(2-butoxyethyl) phosphate (TBOEP) were associated to d15N and/or d13C (all P = 0.02). Besides d15N enrichment, d34S was depleted in nestlings from fjords, inherently close to an urbanised centre. As such, both may have been a spatial proxy for anthropogenic disturbance, possible confounding their use as dietary proxy.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors