one publication added to basket [252684] | Effects of temperature and feeding regime on food consumption, growth, gonad production and quality of the sea urchin Strongylocentrotus intermedius
Zhao, C.; Feng, W.; Wei, J.; Zhang, L.; Sun, P.; Chang, Y. (2015). Effects of temperature and feeding regime on food consumption, growth, gonad production and quality of the sea urchin Strongylocentrotus intermedius. J. Mar. Biol. Ass. U.K. 96(1): 185-195. https://dx.doi.org/10.1017/s0025315415001617
In: Journal of the Marine Biological Association of the United Kingdom. Cambridge University Press/Marine Biological Association of the United Kingdom: Cambridge. ISSN 0025-3154; e-ISSN 1469-7769, more
Related to:Thorndyke, M.; McGowan, F.; Fleming, L.; Solo-Gabriele, H. (Ed.) (2016). Oceans and Human Health. Journal of the Marine Biological Association of the United Kingdom, 96(1). Cambridge University Press: Cambridge. 216 pp., more
| |
Keywords |
Strongylocentrotus intermedius (A. Agassiz, 1864) [WoRMS] Marine/Coastal |
Author keywords |
Sea urchin, Strongylocentrotus intermedius, high temperature, feeding regime, gonad, aquaculture |
Authors | | Top |
- Zhao, C.
- Feng, W.
- Wei, J.
|
- Zhang, L.
- Sun, P.
- Chang, Y.
|
|
Abstract |
Water temperature is one of the most important factors greatly affecting the aquaculture of sea urchins. However, no information is available on how to improve commercial traits of sea urchins reared at high water temperature. Here, we investigated the effects of water temperature and feeding regime on food consumption, growth, gonad production, gametogenesis and gonad quality of the sea urchin Strongylocentrotus intermedius. We found that high water temperature (22°C) significantly decreased dried food consumption and gonad production of S. intermedius, but not the somatic growth. The feeding regime of formulated feed and kelp has direct application potential in S. intermedius aquaculture, especially at field temperature. Feeding kelp alone is not effective in supporting growth and gonad production for S. intermedius cultured at high water temperature. This finding greatly challenges the current commonly used feeding regime (feeding macroalgae only) for S. intermedius cultured at high water temperature. Based on the current results, we suggest the feeding regimes of formulated feed and kelp or formulated feed alone for S. intermedius aquaculture at high water temperature. The present study provides new information for aquaculture of S. intermedius at high temperature and for production out of season. |
|