Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [283056]
Proton pumping accompanies calcification in foraminifera
Toyofuku, T.; Matsuo, M.Y.; de Nooijer, L.J.; Nagai, Y.; Kawada, S.; Fujita, K.; Reichart, G.-J.; Nomaki, H.; Tsuchiya, M.; Sakaguchi, H.; Kitazato, H. (2017). Proton pumping accompanies calcification in foraminifera. Nature Comm. 8(14145): 11 pp. dx.doi.org/10.1038/ncomms14145
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Carbon cycle; Cellular imaging; Environmental impact

Authors  Top 
  • Toyofuku, T.
  • Matsuo, M.Y.
  • de Nooijer, L.J., more
  • Nagai, Y.
  • Kawada, S.
  • Fujita, K.
  • Reichart, G.-J., more
  • Nomaki, H.
  • Tsuchiya, M.
  • Sakaguchi, H.
  • Kitazato, H.

Abstract
    Ongoing ocean acidification is widely reported to reduce the ability of calcifying marine organisms to produce their shells and skeletons. Whereas increased dissolution due to acidification is a largely inorganic process, strong organismal control over biomineralization influences calcification and hence complicates predicting the response of marine calcifyers. Here we show that calcification is driven by rapid transformation of bicarbonate into carbonate inside the cytoplasm, achieved by active outward proton pumping. Moreover, this proton flux is maintained over a wide range of pCO2 levels. We furthermore show that a V-type H+ ATPase is responsible for the proton flux and thereby calcification. External transformation of bicarbonate into CO2 due to the proton pumping implies that biomineralization does not rely on availability of carbonate ions, but total dissolved CO2 may not reduce calcification, thereby potentially maintaining the current global marine carbonate production.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors