Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [285305]
Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin
Scoma, A.; Coma, M.; Kerckhof, F.-M.; Boon, N.; Rabaey, K. (2017). Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin. Biotechnology for Biofuels 10: 17 pp. https://dx.doi.org/10.1186/s13068-017-0701-8
In: Biotechnology for Biofuels. BIOMED CENTRAL LTD: London. e-ISSN 1754-6834, more
Peer reviewed article  

Available in  Authors 

Keywords
    Marine/Coastal; Terrestrial
Author keywords
    Fermentation; Biorefineries; Bulk chemicals Brines; Halophiles;Hydrogen; Methane; VFA; Carboxylate; Anaerobic digestion

Authors  Top 

Abstract
    BackgroundMolasses is a dense and saline by-product of the sugar agroindustry. Its high organic content potentially fuels a myriad of renewable products of industrial interest. However, the biotechnological exploitation of molasses is mainly hampered by the high concentration of salts, an issue that is nowadays tackled through dilution. In the present study, the performance of microbial communities derived from marine sediment was compared to that of communities from a terrestrial environment (anaerobic digester sludge). The aim was to test whether adaptation to salinity represented an advantage for fermenting molasses into renewable chemicals such as volatile fatty acids (VFAs) although high sugar concentrations are uncommon to marine sediment, contrary to anaerobic digesters.ResultsTerrestrial and marine microbial communities were enriched in consecutive batches at different initial pH values (pHi; either 6 or 7) and molasses dilutions (equivalent to organic loading rates (OLRs) of 1 or 5 gCOD L−1 d−1) to determine the best VFA production conditions. Marine communities were supplied with NaCl to maintain their native salinity. Due to molasses inherent salinity, terrestrial communities experienced conditions comparable to brackish or saline waters (20–47 mS cm−1), while marine conditions resembled brine waters (>47 mS cm−1). Enrichments at optimal conditions of OLR 5 gCOD L-1 d-1 and pHi 7 were transferred into packed-bed biofilm reactors operated continuously. The reactors were first operated at 5 gCOD L-1 d-1, which was later increased to OLR 10 gCOD L−1 d−1. Terrestrial and marine reactors had different gas production and community structures but identical, remarkably high VFA bioconversion yields (above 85%) which were obtained with conductivities up to 90 mS cm−1. COD-to-VFA conversion rates were comparable to the highest reported in literature while processing other organic leftovers at much lower salinities.ConclusionsAlthough salinity represents a major driver for microbial community structure, proper acclimation yielded highly efficient systems treating molasses, irrespective of the inoculum origin. Selection of equivalent pathways in communities derived from different environments suggests that culture conditions select for specific functionalities rather than microbial representatives. Mass balances, microbial community composition, and biochemical analysis indicate that biomass turnover rather than methanogenesis represents the main limitation to further increasing VFA production with molasses. This information is relevant to moving towards molasses fermentation to industrial application.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors