Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [285373]
Differential antioxidant response between two Symbiodinium species from contrasting environments
Roberty, S.; Furla, P.; Plumier, J.-C. (2016). Differential antioxidant response between two Symbiodinium species from contrasting environments. Plant Cell Environ. 39(12): 2713-2724. https://dx.doi.org/10.1111/pce.12825
In: Plant, Cell and Environment. Blackwell: Oxford. ISSN 0140-7791; e-ISSN 1365-3040, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    coral bleaching; diatoxanthin; menadione sodium bisulfite; oxidativestress; pigments; reactive oxygen species; symbiosis; ubiquitin

Authors  Top 
  • Roberty, S., more
  • Furla, P.
  • Plumier, J.-C., more

Abstract
    High sea surface temperature accompanied by high levels of solar irradiance is responsible for the disruption of the symbiosis between cnidarians and their symbiotic dinoflagellates from the genus Symbiodinium. This phenomenon, known as coral bleaching, is one of the major threats affecting coral reefs around the world. Because an important molecular trigger to bleaching appears related to the production of reactive oxygen species (ROS), it is critical to understand the function of the antioxidant network of Symbiodinium species. In this study we investigated the response of two Symbiodinium species, from contrasting environments, to a chemically induced oxidative stress. ROS produced during this oxidative burst reduced photosynthesis by 30 to 50% and significantly decreased the activity of superoxide dismutase. Lipid peroxidation levels and carotenoid concentrations, especially diatoxanthin, confirm that these molecules act as antioxidants and contribute to the stabilization of membrane lipids. The comparative analysis between the two Symbiodinium species allowed us to highlight that Symbiodinium sp. clade A temperate was more tolerant to oxidative stress than the tropical S. kawagutii clade F. These differences are very likely a consequence of adaptation to their natural environment, with the temperate species experiencing conditions of temperature and irradiance much more variable and extreme.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors