Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [285431]
Diversity of plantonic fish larvae along a latitudinal gradient in the Eastern Atlantic Ocean estimated through DNA barcodes
Ardura, A.; Morote, E.; Kochzius, M.; Garcia-Vazquez, E. (2016). Diversity of plantonic fish larvae along a latitudinal gradient in the Eastern Atlantic Ocean estimated through DNA barcodes. PeerJ 4: 16 pp. https://dx.doi.org/10.7717/peerj.2438
In: PeerJ. PeerJ: Corte Madera & London. e-ISSN 2167-8359, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Pelagic fish larvae; DNA barcoding; Diversity; Visual identification;Atlantic Ocean; COI gene

Authors  Top 
  • Ardura, A.
  • Morote, E.
  • Kochzius, M., more
  • Garcia-Vazquez, E., more

Abstract
    Mid-trophic pelagic fish are essential components of marine ecosystems because they represent the link between plankton and higher predators. Moreover, they are the basis of the most important fisheries resources; for example, in African waters. In this study, we have sampled pelagic fish larvae in the Eastern Atlantic Ocean along a latitudinal gradient between 37°N and 2°S. We have employed Bongo nets for plankton sampling and sorted visually fish and fish larvae. Using the cytochrome oxidase I gene (COI) as a DNA barcode, we have identified 44 OTUs down to species level that correspond to 14 families, with Myctophidae being the most abundant. A few species were cosmopolitan and others latitude-specific, as was expected. The latitudinal pattern of diversity did not exhibit a temperate-tropical cline; instead, it was likely correlated with environmental conditions with a decline in low-oxygen zones. Importantly, gaps and inconsistencies in reference DNA databases impeded accurate identification to the species level of 49% of the individuals. Fish sampled from tropical latitudes and some orders, such as Perciformes, Myctophiformes and Stomiiformes, were largely unidentified due to incomplete references. Some larvae were identified based on morphology and COI analysis for comparing time and costs employed from each methodology. These results suggest the need of reinforcing DNA barcoding reference datasets of Atlantic bathypelagic tropical fish that, as main prey of top predators, are crucial for ecosystem-based management of fisheries resources.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors