one publication added to basket [301195] | 2D experiments of wave dynamics in front of and over a sea dike with a very shallow foreshore
Gruwez, V.; Vandebeek, I.; Kisacik, D.; Streicher, M.; Altomare, C.; Suzuki, T.; Verwaest, T.; Kortenhaus, A.; Troch, P. (2018). 2D experiments of wave dynamics in front of and over a sea dike with a very shallow foreshore, in: Proceedings of the 7th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab18), Santander, Spain, May 22-26, 2018. pp. 1-10
In: (2018). Proceedings of the 7th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab18), Santander, Spain, May 22-26, 2018. [S.n.]: [s.l.]. , more
|
Available in | Authors |
|
Document type: Conference paper
|
Keyword |
|
Author keywords |
physical experiment, wave transformation, wave overtopping, overtopped wave impact force, very shallow foreshore, infragravity waves |
Abstract |
This paper introduces the 2D experiments conducted for the CREST project in the wave flume of Ghent University. The experiments focus on wave interactions with low-crested sea dikes fronted by a shallow foreshore and mildly to steeply sloping beaches, which is a very typical situation along the Belgian coast. Foreshore slopes of 1/20, 1/50 and 1/80 were tested for a range of low to high energy wave conditions, a variation in wave steepness and two water levels. The main goal was to obtain a dataset in which the effects of the infragravity waves on the wave-structure interactions (i.e. wave overtopping and impact forces) can be studied. The tests included high spatial resolution surface elevation measurement tests, which is new for beaches including a dike in the inner surf zone. From the preliminary results it became clear that the foreshore slope influences the wave transformation up to the dike toe. The influence is apparent comparing to existing (semi-) empirical models for prediction of the spectral wave period at the dike toe and wave overtopping at the dike crest. The high spatial resolution data show a steep increase in infragravity significant wave height in the very shallow area in front of the dike. |
|