Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [310498]
Diversity in sequences, post-translational modifications and expected pharmacological activities of toxins from four Conus species revealed by the combination of cutting-edge proteomics, transcriptomics and bioinformatics
Degueldre, M.; Verdenaud, M.; Legarda, G.; Minambres, R.; Zuniga, S.; Leblanc, M.; Gilles, N.; Ducancel, F.; De Pauw, E.; Quinton, L. (2017). Diversity in sequences, post-translational modifications and expected pharmacological activities of toxins from four Conus species revealed by the combination of cutting-edge proteomics, transcriptomics and bioinformatics. Toxicon 130: 116-125. https://dx.doi.org/10.1016/j.toxicon.2017.02.014
In: Toxicon. Elsevier: Oxford. ISSN 0041-0101; e-ISSN 1879-3150, more
Peer reviewed article  

Available in  Authors 

Keywords
    Conus Linnaeus, 1758 [WoRMS]
    Marine/Coastal
Author keywords
    Venomics; Proteomics; Transcriptomics; Bioinformatics; Cone snail;Diversity

Authors  Top 
  • Degueldre, M., more
  • Verdenaud, M.
  • Legarda, G.
  • Minambres, R.
  • Zuniga, S.
  • Leblanc, M.
  • Gilles, N.
  • Ducancel, F.
  • De Pauw, E., more
  • Quinton, L., more

Abstract
    Venomous animals have developed a huge arsenal of reticulated peptides for defense and predation. Based on various scaffolds, they represent a colossal pharmacological diversity, making them top candidates for the development of innovative drugs. Instead of relying on the classical, low-throughput bioassay-guided approach to identify innovative bioactive peptides, this work exploits a recent paradigm to access to venom diversity. This strategy bypasses the classical approach by combining high throughput transcriptomics, proteomics and bioinformatics cutting-edge technologies to generate reliable peptide sequences. The strategy employed to generate hundreds of reliable sequences from Conus venoms is deeply described. The study led to the discovery of (i) conotoxins that belong to known pharmacological families targeting various GPCRs or ion-gated channels, and (ii) new families of conotoxins, never described to date. It also focusses on the diversity of genes, sequences, folds, and PTM's provided by such species.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors