Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [322053]
Animal community dynamics at senescent and active vents at the 9°N East Pacific Rise after a volcanic eruption
Gollner, S.; Govenar, B.; Martinez Arbizu, P.; Mullineaux, L.S.; Mills, S.; Le Bris, N.; Weinbauer, M.; Shank, T.M.; Bright, M. (2020). Animal community dynamics at senescent and active vents at the 9°N East Pacific Rise after a volcanic eruption. Front. Mar. Sci. 6: 832. https://dx.doi.org/10.3389/fmars.2019.00832
In: Frontiers in Marine Science. Frontiers Media: Lausanne. e-ISSN 2296-7745, more
Peer reviewed article  

Available in  Authors 

Author keywords
    senescent vent; biodiversity; volcanic eruption; recovery; meiofauna; macrofaunal; deep-sea mining

Authors  Top 
  • Gollner, S., more
  • Govenar, B.
  • Martinez Arbizu, P., more
  • Mullineaux, L.S.
  • Mills, S.
  • Le Bris, N.
  • Weinbauer, M.
  • Shank, T.M.
  • Bright, M.

Abstract
    In 2005/2006, a major volcanic eruption buried faunal communities over a large area of the 9°N East Pacific Rise (EPR) vent field. In late 2006, we initiated colonization studies at several types of post eruption vent communities including those that either survived the eruption, re-established after the eruption, or arisen at new sites. Some of these vents were active whereas others appeared senescent. Although the spatial scale of non-paved (surviving) vent communities was small (several m2 compared to several km2 of total paved area), the remnant individuals at surviving active and senescent vent sites may be important for recolonization. A total of 46 meio- and macrofauna species were encountered at non-paved areas with 33 of those species detected were also present at new sites in 2006. The animals living at non-paved areas represent refuge populations that could act as source populations for new vent sites directly after disturbance. Remnants may be especially important for the meiofauna, where many taxa have limited or no larval dispersal. Meiofauna may reach new vent sites predominantly via migration from local refuge areas, where a reproductive and abundant meiofauna is thriving. These findings are important to consider in any potential future deep-sea mining scenario at deep-sea hydrothermal vents. Within our 4-year study period, we regularly observed vent habitats with tubeworm assemblages that became senescent and died, as vent fluid emissions locally stopped at patches within active vent sites. Senescent vents harbored a species rich mix of typical vent species as well as rare yet undescribed species. The senescent vents contributed significantly to diversity at the 9°N EPR with 55 macrofaunal species (11 singletons) and 74 meiofaunal species (19 singletons). Of these 129 species associated with senescent vents, 60 have not been reported from active vents. Tubeworms and other vent megafauna not only act as foundation species when alive but provide habitat also when dead, sustaining abundant and diverse small sized fauna.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors