Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [32561]
Seasonal temperature and salinity fields in the Mediterranean Sea: climatological analyses of a historical data set
Brasseur, P.; Beckers, J.-M.; Brankart, J.-M.; Schoenauen, R. (1996). Seasonal temperature and salinity fields in the Mediterranean Sea: climatological analyses of a historical data set. Deep-Sea Res., Part 1, Oceanogr. Res. Pap. 43(2): 159-192
In: Deep-Sea Research, Part I. Oceanographic Research Papers. Elsevier: Oxford. ISSN 0967-0637; e-ISSN 1879-0119, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Brasseur, P.
  • Beckers, J.-M., more
  • Brankart, J.-M.
  • Schoenauen, R.

Abstract
    Climatological analyses of a historical data base have been carried out with the aim of reconstructing the three-dimensional temperature and salinity fields in the Mediterranean Sea. Seasonal and monthly distributions of hydrographic properties have been computed by a variational inverse method as an alternate to the standard Gandin (1969; Objective analysis of meterological fields, Israeli Program for Scientific Translation, Jerusalem) procedure. The spline solutions of the minimization problem are demonstrated to be numerically and theoretically equivalent to field estimates obtained by conventional objective analysis. The application of a finite-element technique allows analysis to be performed in the model space rather than in the observational space, which substantially improves the numerical efficiency of the procedure. The parameters of the scheme are adjusted according to the statistics of the climatological data. The results,realized as gridded data sets (horizontal resolution of 0.25 degrees), show some trends in seasonal variability affecting the properties of water masses. As expected, the upper layer is subject to a well-defined seasonal signal affecting both the temperature and salinity fields. Error maps, reflecting the degree of uncertainty in the analyses, have been systematically produced. The present work is conceived as a basic support to more advanced studies such as diagnostic calculations, initialization of dynamical models, assimilation of hydrological data into primitive equation models, or planning of experimental surveys. New versions of the climatological fields will be released as data are added to the historical data base.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors