Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [350512]
The land-to-ocean loops of the global carbon cycle
Regnier, P.; Resplandy, L.; Najjar, R.G.; Ciais, P. (2022). The land-to-ocean loops of the global carbon cycle. Nature (Lond.) 603(7901): 401-410. https://dx.doi.org/10.1038/s41586-021-04339-9
In: Nature: International Weekly Journal of Science. Nature Publishing Group: London. ISSN 0028-0836; e-ISSN 1476-4687, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Regnier, P., more
  • Resplandy, L.
  • Najjar, R.G.
  • Ciais, P.

Abstract
    Carbon storage by the ocean and by the land is usually quantified separately, and does not fully take into account the land-to-ocean transport of carbon through inland waters, estuaries, tidal wetlands and continental shelf waters—the ‘land-to-ocean aquatic continuum’ (LOAC). Here we assess LOAC carbon cycling before the industrial period and perturbed by direct human interventions, including climate change. In our view of the global carbon cycle, the traditional ‘long-range loop’, which carries carbon from terrestrial ecosystems to the open ocean through rivers, is reinforced by two ‘short-range loops’ that carry carbon from terrestrial ecosystems to inland waters and from tidal wetlands to the open ocean. Using a mass-balance approach, we find that the pre-industrial uptake of atmospheric carbon dioxide by terrestrial ecosystems transferred to the ocean and outgassed back to the atmosphere amounts to 0.65 ± 0.30 petagrams of carbon per year (±2 sigma). Humans have accelerated the cycling of carbon between terrestrial ecosystems, inland waters and the atmosphere, and decreased the uptake of atmospheric carbon dioxide from tidal wetlands and submerged vegetation. Ignoring these changing LOAC carbon fluxes results in an overestimation of carbon storage in terrestrial ecosystems by 0.6 ± 0.4 petagrams of carbon per year, and an underestimation of sedimentary and oceanic carbon storage. We identify knowledge gaps that are key to reduce uncertainties in future assessments of LOAC fluxes.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors