Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [367638]
Greenland ice sheet rainfall climatology, extremes and atmospheric river rapids
Box, J.E.; Nielsen, K.P.; Yang, X.; Niwano, M.; Wehrlé, A.; van As, D.; Fettweis, X.; Køltzow, M.A.Ø.; Palmason, B.; Fausto, R.S.; van den Broeke, M.R.; Huai, B.; Ahlstrom, A.P.; Langley, K.; Dachauer, A.; Noël, B. (2023). Greenland ice sheet rainfall climatology, extremes and atmospheric river rapids. Meteorol. Appl. 30(4): e2134. https://dx.doi.org/10.1002/met.2134
In: Meteorological Applications. Royal Meteorological Society: Reading. ISSN 1350-4827; e-ISSN 1469-8080, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Box, J.E.
  • Nielsen, K.P.
  • Yang, X.
  • Niwano, M.
  • Wehrlé, A.
  • van As, D.
  • Fettweis, X., more
  • Køltzow, M.A.Ø.
  • Palmason, B.
  • Fausto, R.S.
  • van den Broeke, M.R.
  • Huai, B.
  • Ahlstrom, A.P.
  • Langley, K.
  • Dachauer, A.
  • Noël, B., more

Abstract
    Greenland rainfall has come into focus as a climate change indicator and from a variety of emerging cryospheric impacts. This study first evaluates rainfall in five state-of-the-art numerical prediction systems (NPSs) (CARRA, ERA5, NHM-SMAP, RACMO, MAR) using in situ rainfall data from two regions spanning from land onto the ice sheet. The new EU Copernicus Climate Change Service (C3S) Arctic Regional ReAnalysis (CARRA), with a relatively fine (2.5 km) horizontal grid spacing and extensive within-model-domain observational initialization, has the lowest average bias and highest explained variance relative to the field data. ERA5 inland wet bias versus CARRA is consistent with the field data and other research and is presumably due to more ERA5 topographic smoothing. A CARRA climatology 1991–2021 has rainfall increasing by more than one-third for the ice sheet and its peripheral ice masses. CARRA and in situ data illuminate extreme (above 300 mm per day) local rainfall episodes. A detailed examination CARRA data reveals the interplay of mass conservation that splits flow around southern Greenland and condensational buoyancy generation that maintains along-flow updraft ‘rapids’ 2 km above sea level, which produce rain bands within an atmospheric river interacting with Greenland. CARRA resolves gravity wave oscillations that initiate as a result of buoyancy offshore, which then amplify from terrain-forced uplift. In a detailed case study, CARRA resolves orographic intensification of rainfall by up to a factor of four, which is consistent with the field data.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors