one publication added to basket [383238] | Extreme variation in reproductive strategy: tropical seagrass superclone unveiled
Dierick, J. (2024). Extreme variation in reproductive strategy: tropical seagrass superclone unveiled, in: Mees, J. et al. Book of abstracts – VLIZ Marine Science Day, 6 March 2024, Oostende. VLIZ Special Publication, 91: pp. 69
In: Mees, J.; Seys, J. (Ed.) (2024). Book of abstracts – VLIZ Marine Science Day, 6 March 2024, Oostende. VLIZ Special Publication, 91. Flanders Marine Institute (VLIZ): Oostende. vii + 130 pp. https://dx.doi.org/10.48470/71, more
In: VLIZ Special Publication. Vlaams Instituut voor de Zee (VLIZ): Oostende. ISSN 1377-0950, more
| |
Available in | Author |
|
Document type: Summary
|
Keyword |
|
Author keywords |
Seagrass; Clonality; Dispersal; Conservation; Genetics |
Abstract |
Enhalus acoroides is a large-sized seagrass species that is regionally threatened, yet considered widely distributed across the Indo-Pacific region. Despite its robust fruit dispersal capacity and slow rhizome growth rate favoring sexual reproduction, recent studies revealed substantial variation in the reproductive strategy for E. acoroides. The interplay between sexual and asexual reproduction significantly influences the resilience of seagrass beds to environmental change. As a result, there is a pressing need to enhance our comprehension of the reproduction strategy and dispersal capacity of E. acoroides, and the environmental drivers that control these life history traits. In this study, we investigated the clonal richness, genetic diversity, and genetic connectivity in 33 populations across diverse islands in the Andaman Sea (Phuket), the Gulf of Thailand (Koh Samui, Koh Phangan, Phu Quoc), the Camotes Sea (Leyte), and the Western Pacific Ocean (Guam). Our findings underscore substantial local and regional variability in the reproductive strategy of E. acoroides which has profound implications for the effective conservation of seagrass beds. Strikingly, we found unprecedentedly high levels of clonality in Guam where one exceptionally large and old clone of E. acoroides spans the entire island. |
|