Burial Recording Mines: a valid technique to study bedform migration and storm impact above the sea-floor
Papili, S.; Wever, T.; Dupont, Y. (2013). Burial Recording Mines: a valid technique to study bedform migration and storm impact above the sea-floor, in: Van Lancker, V. et al. (Ed.) MARID 2013: Fourth International Conference on Marine and River Dune Dynamics. Bruges, Belgium, 15-17 April 2013. VLIZ Special Publication, 65: pp. 199-206
In: Van Lancker, V.; Garlan, T. (Ed.) (2013). MARID 2013: Fourth International Conference on Marine and River Dune Dynamics. Bruges, Belgium, 15-17 April 2013. VLIZ Special Publication, 65. Royal Belgian Institute of Natural Sciences/SHOM/Flanders Marine Institute (VLIZ): Oostende. ISBN 978-2-11-128352-7. 338 pp., more
In: VLIZ Special Publication. Vlaams Instituut voor de Zee (VLIZ): Oostende. ISSN 1377-0950, more
| |
Authors | | Top |
- Papili, S., more
- Wever, T.
- Dupont, Y., more
|
|
|
Abstract |
Initially, Burial Recording Mines (BRMs) were used to understand the sea mine burial. It was a technique predominantly related to military purpose. The first experiment was made 1974. Now a day, it is used as a valid tool for marine science. This methodology gives the rare opportunity to observe and analyze the processes acting on the seafloor directly, making the estimation closer to the reality. During MARIDIV, we present the results of 3 months experiment using burial recording mines. The experiment was performed between September 2008 and January 2009. The Wandelaar region on the Belgian Continental Shelf was chosen as suitable test area. 10,000 measurements of the sediment height around the cylindrical object were recorded, each one of those every 15 minutes. The dataset collected, together with sediment characterization and hydrological and meteorological information, allowed the understanding of the bedform migration. During the experiment, 2 storms passed the test area, in October and November 2008. Using Burial Recording Mines gave the rare opportunity to observe and analyze the storm impact directly on the sea-floor. Processes during and after the second storm will be revealed. |
|