Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise
Di Nitto, D.; Neukermans, G.; Koedam, N.; Defever, H.; Pattyn, F.; Kairo, J.G.; Dahdouh-Guebas, F. (2014). Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise. Biogeosciences 11(3): 857-871. https://dx.doi.org/10.5194/bg-11-857-2014
In: Gattuso, J.P.; Kesselmeier, J. (Ed.) Biogeosciences. Copernicus Publications: Göttingen. ISSN 1726-4170; e-ISSN 1726-4189, more
| |
Authors | | Top |
- Di Nitto, D., more
- Neukermans, G., more
- Koedam, N., more
- Defever, H.
|
|
|
Abstract |
Mangrove forests prominently occupy an intertidal boundary position where the effects of sea level rise will be fast and well visible. This study in East Africa (Gazi Bay, Kenya) addresses the question of whether mangroves can be resilient to a rise in sea level by focusing on their potential to migrate towards landward areas. The combinatory analysis between remote sensing, DGPS-based ground truth and digital terrain models (DTM) unveils how real vegetation assemblages can shift under different projected (minimum (+9 cm), relative (+20 cm), average (+48 cm) and maximum (+88 cm)) scenarios of sea level rise (SLR). Under SLR scenarios up to 48 cm by the year 2100, the landward extension remarkably implies an area increase for each of the dominant mangrove assemblages except for Avicennia marina and Ceriops tagal, both on the landward side. On the one hand, the increase in most species in the first three scenarios, including the socio-economically most important species in this area, Rhizophora mucronata and C. tagal on the seaward side, strongly depends on the colonisation rate of these species. On the other hand, a SLR scenario of +88 cm by the year 2100 indicates that the area flooded only by equinoctial tides strongly decreases due to the topographical settings at the edge of the inhabited area. Consequently, the landward Avicennia-dominated assemblages will further decrease as a formation if they fail to adapt to a more frequent inundation. The topography is site-specific; however non-invadable areas can be typical for many mangrove settings. |
|