A new model for biomineralization and trace-element signatures of Foraminifera tests
Nehrke, G.; Keul, N.; Langer, G.; de Nooijer, L.J.; Bijma, J.; Meibom, A. (2013). A new model for biomineralization and trace-element signatures of Foraminifera tests. Biogeosciences 10: 6759–6767. http://dx.doi.org/10.5194/bg-10-6759-2013
In: Gattuso, J.P.; Kesselmeier, J. (Ed.) Biogeosciences. Copernicus Publications: Göttingen. ISSN 1726-4170; e-ISSN 1726-4189, more
| |
Authors | | Top |
- Nehrke, G.
- Keul, N.
- Langer, G.
|
- de Nooijer, L.J., more
- Bijma, J., more
- Meibom, A.
|
|
Abstract |
The Mg/Ca ratio of Foraminifera calcium carbonate tests is used as proxy for seawater temperature and widely applied to reconstruct global paleo-climatic changes. However, the mechanisms involved in the carbonate biomineralization process are poorly understood. The current paradigm holds that calcium ions for the test are supplied primarily by endocytosis of seawater. Here, we combine confocal-laser scanning-microscopy observations of a membrane-impermeable fluorescent marker in the extant benthic species Ammonia aomoriensis with dynamic 44Ca-labeling and NanoSIMS isotopic imaging of its test. We infer that Ca for the test in A. aomoriensis is supplied primarily via trans-membrane transport, but that a small component of passively transported (e.g., by endocytosis) seawater to the site of calcification plays a key role in defining the trace-element composition of the test. Our model accounts for the full range of Mg/Ca and Sr/Ca observed for benthic Foraminifera tests and predicts the effect of changing seawater Mg/Ca ratio. This places foram-based paleoclimatology into a strong conceptual framework. |
|