Unbalanced reduction of nutrient loads has created an offshore gradient from phosphorus to nitrogen limitation in the North Sea
Burson, A.; Stomp, M.; Akil, L.; Brussaard, C.P.D.; Huisman, J. (2016). Unbalanced reduction of nutrient loads has created an offshore gradient from phosphorus to nitrogen limitation in the North Sea. Limnol. Oceanogr. 61(3): 869–888. dx.doi.org/10.1002/lno.10257
In: Limnology and Oceanography. American Society of Limnology and Oceanography: Waco, Tex., etc. ISSN 0024-3590; e-ISSN 1939-5590, more
| |
Authors | | Top |
- Burson, A.
- Stomp, M.
- Akil, L.
|
- Brussaard, C.P.D., more
- Huisman, J.
|
|
Abstract |
Measures to reduce eutrophication have often led to a more effective decline of phosphorus (P) than nitrogen(N) concentrations. The resultant changes in riverine nutrient loads can cause an increase in the N : Pratios of coastal waters. During four research cruises along a 450 km transect, we investigated how reductionsin nutrient inputs during the past 25 yr have affected nutrient limitation patterns in the North Sea. Thisrevealed a strong offshore gradient of dissolved inorganic N : P ratios in spring, from 375 : 1 nearshoretoward 1 : 1 in the central North Sea. This gradient was reflected in high nearshore N : P and C : P ratios ofparticulate organic matter (mainly phytoplankton), indicative of severe P deficiency of coastal phytoplankton,which may negatively affect higher trophic levels in the food web. Nutrient enrichment bioassays performedon-board showed P and Si limitation of phytoplankton growth nearshore, co-limitation of N and P ina transitional region, and N limitation in the outer-shore waters, confirming the existence of an offshore gradientfrom P to N limitation. Different species were limited by different nutrients, indicating that furtherreductions of P loads without concomitant reductions of N loads will suppress colonial Phaeocystis blooms,but will be less effective in diminishing harmful algal blooms by dino- and nanoflagellates. Hence, our resultsprovide evidence that de-eutrophication efforts in northwestern Europe have led to a large imbalance in theN : P stoichiometry of coastal waters of the North Sea, with major consequences for the growth, species composition,and nutritional quality of marine phytoplankton communities. |
|