Skip to main content
Publications | Persons | Institutes | Projects
[ report an error in this record ]basket (0): add | show Print this page

Long-chain diols in settling particles in tropical oceans: insights into sources, seasonality and proxies
de Bar, M.W.; Ullgren, J.E.; Thunnell, R.C.; Wakeham, S.G.; Brummer, G.-J. A.; Stuut, J.-B.W.; Sinninghe Damsté, J.S; Schouten, S. (2019). Long-chain diols in settling particles in tropical oceans: insights into sources, seasonality and proxies. Biogeosciences 16(8): 1705-1727. https://dx.doi.org/10.5194/bg-16-1705-2019

Additional data:
In: Gattuso, J.P.; Kesselmeier, J. (Ed.) Biogeosciences. Copernicus Publications: Göttingen. ISSN 1726-4170; e-ISSN 1726-4189, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • de Bar, M.W., more
  • Ullgren, J.E.
  • Thunnell, R.C.
  • Wakeham, S.G.
  • Brummer, G.-J. A., more
  • Stuut, J.-B.W., more
  • Sinninghe Damsté, J.S, more
  • Schouten, S., more

Abstract
    In this study we analyzed sediment trap time series from five tropical sites to assess seasonal variations in concentrations and fluxes of long-chain diols (LCDs) and associated proxies with emphasis on the long-chain diol index (LDI) temperature proxy. For the tropical Atlantic, we observe that generally less than 2 % of LCDs settling from the water column are preserved in the sediment. The Atlantic and Mozambique Channel traps reveal minimal seasonal variations in the LDI, similar to the two other lipid-based temperature proxies TEX86 and UK37. In addition, annual mean LDI-derived temperatures are in good agreement with the annual mean satellite-derived sea surface temperatures (SSTs). In contrast, the LDI in the Cariaco Basin shows larger seasonal variation, as do the TEX86 and UK37. Here, the LDI underestimates SST during the warmest months, which is possibly due to summer stratification and the habitat depth of the diol producers deepening to around 20–30 m. Surface sediment LDI temperatures in the Atlantic and Mozambique Channel compare well with the average LDI-derived temperatures from the overlying sediment traps, as well as with decadal annual mean SST. Lastly, we observed large seasonal variations in the diol index, as an indicator of upwelling conditions, at three sites: in the eastern Atlantic, potentially linked to Guinea Dome upwelling; in the Cariaco Basin, likely caused by seasonal upwelling; and in the Mozambique Channel, where diol index variations may be driven by upwelling from favorable winds and/or eddy migration.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors