Earthworm activity and availability for meadow birds is restricted in intensively managed grasslands
Onrust, J.; Wymenga, E.; Piersma, T.; Olff, H. (2019). Earthworm activity and availability for meadow birds is restricted in intensively managed grasslands. J. Appl. Ecol. 56(6): 1333-1342. https://dx.doi.org/10.1111/1365-2664.13356
Additional data:
In: Journal of Applied Ecology. British Ecological Society: Oxford. ISSN 0021-8901; e-ISSN 1365-2664, more
| |
Author keywords |
agricultural grasslands; agricultural intensification; dairy farming; earthworms; ecohydrology; food availability; meadow birds; soil desiccation |
Authors | | Top |
- Onrust, J.
- Wymenga, E.
- Piersma, T., more
- Olff, H.
|
|
|
Abstract |
Earthworms are an important prey for the endangered meadow birds of northwest Europe. Although intensive grassland management with high manure inputs generally promotes earthworm abundance, it may reduce the effective food availability for meadow birds through desiccation of the topsoil, which causes earthworms to remain deeper in the soil. We studied the response of Red Worm Lumbricus rubellus, a detritivore, and Grey Worm Aporrectodea caliginosa, a geophage, to soil moisture profiles in the field and under experimental conditions. Surfacing earthworms were counted weekly in eight intensively managed grasslands (treated with high inputs of slurry by slit injection) with variable groundwater tables in the Netherlands. At each count, soil penetration resistance, soil moisture tension and groundwater level were measured, while air temperature and humidity were obtained from a nearby weather station. The response to variation in the vertical distribution of soil moisture was also experimentally studied in the two earthworm species. In the field, earthworms’ surfacing activity at night was negatively associated with soil moisture tension and positively by relative air humidity. Surprisingly, there was no effect of groundwater level; an important management variable in meadow bird conservation. Under experimental conditions, both L. rubellus and A. caliginosa moved to deeper soil layers (>20 cm) in drier soil moisture treatments, avoiding the upper layer when moisture levels dropped below 30%. Synthesis and applications. We propose that in intensively managed grasslands with slurry application, topsoil desiccation reduces earthworm availability for meadow birds. This can be counteracted by keeping soil moisture tensions of the top soil above −15 kPa. We suggest that the late raising of groundwater tables in spring and the disturbance of the soil by slit injection of slurry increase topsoil desiccation. This decreases earthworm availability when it matters most for breeding meadow birds. Meadow bird conservation will benefit from revised manure application strategies that promote earthworm activity near or at the soil surface. |
|