Combined effects of salinity and trematode infections on the filtration capacity, growth and condition of mussels
Bommarito, C.; Khosravi, M.; Thieltges, D.W.; Pansch, C.; Hamm, T.; Pranovi, F.; Vajedsamiei, J. (2022). Combined effects of salinity and trematode infections on the filtration capacity, growth and condition of mussels. Mar. Ecol. Prog. Ser. 699: 33-44. https://dx.doi.org/10.3354/meps14179
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, more
| |
Keywords |
Himasthla elongata (Mehlis, 1831) Dietz, 1909 [WoRMS]; Mytilus Linnaeus, 1758 [WoRMS] Marine/Coastal |
Author keywords |
Condition index; Filtration; Freshening; Growth; Parasite; Salinity; Himasthla elongata; Mytilus |
Authors | | Top |
- Bommarito, C.
- Khosravi, M.
- Thieltges, D.W., more
- Pansch, C.
|
- Hamm, T.
- Pranovi, F.
- Vajedsamiei, J.
|
|
Abstract |
The blue mussel (Mytilus species complex) is an important ecosystem engineer, and salinity can be a major abiotic driver of mussel functioning in coastal ecosystems. However, little is known about the interactive effects of abiotic drivers and trematode infection. This studyinvestigated the combined effects of salinity and Himasthla elongata and Renicola roscovita metacercarialinfections on the filtration capacity, growth, and condition of M. edulis from the Baltic Sea. In a laboratory experiment, groups of infected and uninfected mussels were exposed to a wide range of salinities (6-30, in steps of 3) for 1 mo. Shell growth was found to be positively correlated with salinity and optimal at 18-24 at the end of the experiment, imposed by constraints in shell calcification under lower salinities. Mussel shell growth was not affected by H. elongata infection. While salinity had only a minor effect on tissue dry weight, infected mussels had a significantly lower tissue dry weight than uninfected mussels. Most interestingly, the combination of salinity and trematode infections negatively affected the mussels’ condition indices at lower salinity levels (6 and 9), suggesting that trematode infections are more detrimental to mussels when combined with freshening. A significant positive effect of salinity on mussel filtration was found, with an initial optimum at salinity 18 shifting to 18-24 by the end of the experiment. These findings indicate that salinity and parasite infections act as synergistic stressors for mussels, and enhance the understanding of potential future ecosystem shifts under climate change-induced freshening in coastal waters.
|
|